
EasyVisa Project

Context:
Business communities in the United States are facing high demand for human resources, but
one of the constant challenges is identifying and attracting the right talent, which is perhaps the
most important element in remaining competitive. Companies in the United States look for
hard-working, talented, and qualified individuals both locally as well as abroad.

The Immigration and Nationality Act (INA) of the US permits foreign workers to come to the
United States to work on either a temporary or permanent basis. The act also protects US
workers against adverse impacts on their wages or working conditions by ensuring US
employers' compliance with statutory requirements when they hire foreign workers to fill
workforce shortages. The immigration programs are administered by the Office of Foreign
Labor Certification (OFLC).

OFLC processes job certification applications for employers seeking to bring foreign workers
into the United States and grants certifications in those cases where employers can demonstrate
that there are not sufficient US workers available to perform the work at wages that meet or
exceed the wage paid for the occupation in the area of intended employment.

In FY 2016, the OFLC processed 775,979 employer applications for 1,699,957 positions for
temporary and permanent labor certifications. This was a nine percent increase in the overall
number of processed applications from the previous year. The process of reviewing every case is
becoming a tedious task as the number of applicants is increasing every year.

The increasing number of applicants every year calls for a Machine Learning based solution that
can help in shortlisting the candidates having higher chances of VISA approval. OFLC has hired
your firm EasyVisa for data-driven solutions. You as a data scientist have to analyze the data
provided and, with the help of a classification model:

• Facilitate the process of visa approvals.
• Recommend a suitable profile for the applicants for whom the visa should be certified or

denied based on the drivers that significantly influence the case status.

Data Description
The data contains the different attributes of the employee and the employer. The detailed data
dictionary is given below.

• case_id: ID of each visa application
• continent: Information of continent the employee
• education_of_employee: Information of education of the employee
• has_job_experience: Does the employee has any job experience? Y= Yes; N = No
• requires_job_training: Does the employee require any job training? Y = Yes; N = No
• no_of_employees: Number of employees in the employer's company

• yr_of_estab: Year in which the employer's company was established
• region_of_employment: Information of foreign worker's intended region of employment

in the US.
• prevailing_wage: Average wage paid to similarly employed workers in a specific

occupation in the area of intended employment. The purpose of the prevailing wage is to
ensure that the foreign worker is not underpaid compared to other workers offering the
same or similar service in the same area of employment.

• unit_of_wage: Unit of prevailing wage. Values include Hourly, Weekly, Monthly, and
Yearly.

• full_time_position: Is the position of work full-time? Y = Full Time Position; N = Part Time
Position

• case_status: Flag indicating if the Visa was certified or denied

Importing Necessary Libraries
This command will make Python code more structured
%load_ext nb_black

Make warnings not displayed
import warnings

warnings.filterwarnings("ignore")
from statsmodels.tools.sm_exceptions import ConvergenceWarning

warnings.simplefilter("ignore", ConvergenceWarning)

Libraries for reading and manipulating data
import pandas as pd
import numpy as np

Library for splitting data
from sklearn.model_selection import train_test_split

Libaries for data visualization
import matplotlib.pyplot as plt
import seaborn as sns

Set limits on number of displayed columns and rows
pd.set_option("display.max_columns", None) # no maximum limit
pd.set_option("display.max_rows", 200) # maximum of 200 rows

Library for building and showing decision tree models
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot_tree

Library for Bagging ensemble technique
from sklearn.ensemble import BaggingClassifier

Library for Random Forest ensemble technique
from sklearn.ensemble import RandomForestClassifier

Library for AdaBoost ensemble technique
from sklearn.ensemble import AdaBoostClassifier

Library for Gradient Boosting ensemble technique
from sklearn.ensemble import GradientBoostingClassifier

Library for XGBoost ensemble technique
from xgboost import XGBClassifier

Library for Stacking ensemble technique
from sklearn.ensemble import StackingClassifier

To tune different models
from sklearn.model_selection import GridSearchCV

Libraries for calculating different metric scores
from sklearn.metrics import (
 f1_score,
 accuracy_score,
 recall_score,
 precision_score,
 make_scorer,
 confusion_matrix,
)

<IPython.core.display.Javascript object>

Importing and Checking Data
Read data and create a data frame
df_orig = pd.read_csv("EasyVisa.csv") # original data frame

Create a copy of original data frame for further steps
df_0 = df_orig.copy()

<IPython.core.display.Javascript object>

Print size of data frame
print(
 f"There are {df_0.shape[0]} rows and {df_0.shape[1]} columns in
the original data frame."
)

There are 25480 rows and 12 columns in the original data frame.

<IPython.core.display.Javascript object>

Show sample rows of original data
df_0.sample(10, random_state=1)

 case_id continent education_of_employee
has_job_experience \
17639 EZYV17640 Asia Bachelor's
Y
23951 EZYV23952 Oceania Bachelor's
N
8625 EZYV8626 Asia Master's
N
20206 EZYV20207 Asia Bachelor's
Y
7471 EZYV7472 Europe Bachelor's
Y
3433 EZYV3434 Asia Bachelor's
Y
24440 EZYV24441 Europe High School
N
12104 EZYV12105 Asia Master's
Y
15656 EZYV15657 Asia Bachelor's
N
23110 EZYV23111 North America Bachelor's
Y

 requires_job_training no_of_employees yr_of_estab \
17639 N 567 1992
23951 N 619 1938
8625 N 2635 2005
20206 Y 3184 1986
7471 N 4681 1928
3433 N 222 1989
24440 Y 3278 1994
12104 N 1359 1997
15656 N 2081 2003
23110 N 854 1998

 region_of_employment prevailing_wage unit_of_wage
full_time_position \
17639 Midwest 26842.9100 Year
Y
23951 Midwest 66419.9800 Year
Y
8625 South 887.2921 Hour
Y
20206 Northeast 49435.8000 Year
Y
7471 West 49865.1900 Year
Y

3433 South 813.7261 Hour
Y
24440 South 204948.3900 Year
Y
12104 West 202237.0400 Year
N
15656 West 111713.0200 Year
Y
23110 Northeast 444.8257 Hour
Y

 case_status
17639 Certified
23951 Certified
8625 Certified
20206 Certified
7471 Denied
3433 Certified
24440 Denied
12104 Certified
15656 Denied
23110 Denied

<IPython.core.display.Javascript object>

Observations
• The column names all seem fine and do not need modification.
• The column case_id could be removed, as it does not contain any data usable in the

prediction models.
• The values in the columns has_job_experience, requires_job_training, and

full_time_poistion are Y or N, so they could be encoded as 1 and 0, respectively.
• The education levels stored in the column education_of_employee could be replaced

with ordinal integer values.
• The variable yr_of_estab is hard to interpret, so it could be transformed into years

since establishment.
• The unit of prevaliling_wage is not constant, so it would make this parameter more

interpretable if its unit is made constant. This will reduce the number of independent
variables as unit_of_wage will be removed.

Check for duplicate rows
dplct_no = df_0.duplicated().sum()
print(f"There are {dplct_no} duplicate rows in the data.")

There are 0 duplicate rows in the data.

<IPython.core.display.Javascript object>

Check types of data columns and number of non-null values in each
column
df_0.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 25480 entries, 0 to 25479

Data columns (total 12 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 case_id 25480 non-null object

 1 continent 25480 non-null object

 2 education_of_employee 25480 non-null object

 3 has_job_experience 25480 non-null object

 4 requires_job_training 25480 non-null object

 5 no_of_employees 25480 non-null int64

 6 yr_of_estab 25480 non-null int64

 7 region_of_employment 25480 non-null object

 8 prevailing_wage 25480 non-null float64

 9 unit_of_wage 25480 non-null object

 10 full_time_position 25480 non-null object

 11 case_status 25480 non-null object

dtypes: float64(1), int64(2), object(9)

memory usage: 2.3+ MB

<IPython.core.display.Javascript object>

Observations
• Considering that the total of rows is 25480, none of the columns have null/missing

values.
• Among the 11 columns of data (excluding case_id), 3 are of numeric type and the

remaining 8 are of non-numeric type.
– Numeric:

• Integer: no_of_employees and yr_of_estab

• Float: prevailing_wage
– Non-numeric:

• Object: continent, education_of_employee,
has_job_experience, requires_job_training,
region_of_employment, unit_of_wage, full_time_position,
and case_status

Check statistical summary of numeric data
df_0.describe().T

 count mean std min
25% \
no_of_employees 25480.0 5667.043210 22877.928848 -26.0000
1022.00
yr_of_estab 25480.0 1979.409929 42.366929 1800.0000
1976.00
prevailing_wage 25480.0 74455.814592 52815.942327 2.1367
34015.48

 50% 75% max
no_of_employees 2109.00 3504.0000 602069.00
yr_of_estab 1997.00 2005.0000 2016.00
prevailing_wage 70308.21 107735.5125 319210.27

<IPython.core.display.Javascript object>

Observations
• The mean and median values of no_of_employees are 5667 and 2109, respectively,

implying a right-skewed distribution.
• The maximum value of no_of_employees is above 600000, which is quite high but

possible.
• The minimum value of no_of_employees is -26, i.e., negative, which is unreasonable.

The negative values should be treated as missing values.
• The oldest and newest employers have been established since (yr_of_estab =) 1800

and 2016, respectively.
• The distribution of prevailing_wage is difficult to interpret at this point, because its

unit varies across the rows. However, the minimum value is above zero, which is
reasonable.

Check statistical summary of non-numeric data
df_0.describe(include=["object"]).T

 count unique top freq
case_id 25480 25480 EZYV01 1
continent 25480 6 Asia 16861
education_of_employee 25480 4 Bachelor's 10234
has_job_experience 25480 2 Y 14802
requires_job_training 25480 2 N 22525
region_of_employment 25480 5 Northeast 7195
unit_of_wage 25480 4 Year 22962

full_time_position 25480 2 Y 22773
case_status 25480 2 Certified 17018

<IPython.core.display.Javascript object>

Identify unique values of categorical data columns
cat_cols = df_0.select_dtypes(include="object").columns # columns of
object data type

for col in cat_cols:
 print("Unique values in the column", col, "are:")
 print(df_0[col].value_counts())
 print("=" * 60)

Unique values in the column case_id are:

EZYV01 1

EZYV16995 1

EZYV16993 1

EZYV16992 1

EZYV16991 1

 ..

EZYV8492 1

EZYV8491 1

EZYV8490 1

EZYV8489 1

EZYV25480 1

Name: case_id, Length: 25480, dtype: int64

==

Unique values in the column continent are:

Asia 16861

Europe 3732

North America 3292

South America 852

Africa 551

Oceania 192

Name: continent, dtype: int64

==

Unique values in the column education_of_employee are:

Bachelor's 10234

Master's 9634

High School 3420

Doctorate 2192

Name: education_of_employee, dtype: int64

==

Unique values in the column has_job_experience are:

Y 14802

N 10678

Name: has_job_experience, dtype: int64

==

Unique values in the column requires_job_training are:

N 22525

Y 2955

Name: requires_job_training, dtype: int64

==

Unique values in the column region_of_employment are:

Northeast 7195

South 7017

West 6586

Midwest 4307

Island 375

Name: region_of_employment, dtype: int64

==

Unique values in the column unit_of_wage are:

Year 22962

Hour 2157

Week 272

Month 89

Name: unit_of_wage, dtype: int64

==

Unique values in the column full_time_position are:

Y 22773

N 2707

Name: full_time_position, dtype: int64

==

Unique values in the column case_status are:

Certified 17018

Denied 8462

Name: case_status, dtype: int64

==

<IPython.core.display.Javascript object>

Observations
• The majority of employees are from Asia.
• The majority of employees have a Bachelor's degree.
• Most of the employees have job experience.
• The vast majority of the jobs do not require training.
• The regions Northeast, South, and West need most of the employees.
• The available units for wage are Year, Hour, Week, and Month. The majority of the wage

values in the data are per year.

• The vast majority of the applications are for full-time positions.
• Near 2/3 of the visa applications are certified.

Drop case_id column before EDA, as it has no meaning for analyses
and modeling
df_0.drop("case_id", axis=1, inplace=True)

<IPython.core.display.Javascript object>

Exploratory Data Analysis (EDA)

a) Univariate Analysis
User-Defined Functions for Univariate Plots
User-defined function to plot a boxplot and a histogram along the
same scale
def histogram_boxplot(
 data, feature, xlabel, ylabel, figsize=(8, 6), kde=False,
bins=None
):
 """
 Boxplot and histogram combined

 data: dataframe
 feature: dataframe column
 xlabel: label of x-axis
 ylabel: label of y-axis
 figsize: size of figure (default (8, 6))
 kde: whether to show the density curve (default False)
 bins: number of bins for histogram (default None)
 """
 f2, (ax_box2, ax_hist2) = plt.subplots(
 nrows=2, # Number of rows of the subplot grid= 2
 sharex=True, # x-axis will be shared among all subplots
 gridspec_kw={"height_ratios": (0.25, 0.75)},
 figsize=figsize,
) # creating the 2 subplots

 sns.boxplot(
 data=data, x=feature, ax=ax_box2, showmeans=True,
color="orange"
) # boxplot will be created and a star will indicate the mean
value of the column

 sns.histplot(
 data=data, x=feature, kde=kde, ax=ax_hist2, bins=bins,

palette="Set2"
) if bins else sns.histplot(
 data=data, x=feature, kde=kde, ax=ax_hist2
) # For histogram

 ax_hist2.axvline(
 data[feature].mean(), color="green", linestyle="--"
) # Add mean to the histogram

 ax_hist2.axvline(
 data[feature].median(), color="red", linestyle="-"
) # Add median to the histogram

 ax_box2.set_xlabel("", fontsize=16) # remove label of 1st x-axis
 ax_hist2.set_xlabel(xlabel, fontsize=16) # set 2nd x-axis label
 ax_hist2.set_ylabel(ylabel, fontsize=16)
 # set y-axis label

<IPython.core.display.Javascript object>

User-defined function to create labeled barplots
def labeled_barplot(data, feature, xlabel, ylabel, perc=False,
n=None):
 """
 Barplot with percentage to the left

 data: dataframe
 feature: dataframe column
 xlabel: label of x-axis
 ylabel: label of y-axis
 perc: whether to display percentages instead of count (default is
False)
 n: displays the top n category levels (default is None, i.e.,
display all levels)
 """

 total = len(data[feature]) # length of the column
 count = data[feature].nunique()
 if n is None:
 plt.figure(figsize=(8, 0.5 * count + 1))
 else:
 plt.figure(figsize=(8, 0.5 * n + 1))

 plt.yticks(fontsize=14)
 plt.xticks(fontsize=14)

 ax = sns.countplot(
 data=data,
 y=feature,
 palette="Set2",

 order=data[feature].value_counts().index[:n].sort_values(),
)

 for p in ax.patches:
 if perc == True:
 label = "{:.1f}%".format(
 100 * p.get_width() / total
) # percentage of each class of the category
 else:
 label = p.get_width() # count of each level of the
category

 y = p.get_y() + p.get_height() / 2
 x = p.get_width()

 ax.annotate(
 label,
 (x, y),
 ha="left",
 va="center",
 size=12,
 xytext=(0, 0),
 textcoords="offset points",
) # annotate the percentage

 ax.set_xlabel(xlabel, fontsize=16) # set x-axis label
 ax.set_ylabel(ylabel, fontsize=16) # set y-axis label

 plt.show() # show the plot

<IPython.core.display.Javascript object>

Continent of Origin
Use user-defined function labeled_barplot() to examine distribution
of data
labeled_barplot(
 data=df_0,
 feature="continent",
 xlabel="Number of Applications",
 ylabel="Continent of Origin",
 perc=True,
)

<IPython.core.display.Javascript object>

Observations
• The majority (66%) of the visa applicants are from Asia, which makes sense given the

high population of this continent.
• The lowest fraction (<1%) of the applicants are from Oceania, which also makes sense

given its very low population.
• North America and Europe have close number of applicants (12.9% and 14.6%).

Education Level
Use user-defined function labeled_barplot() to examine distribution
of data
labeled_barplot(
 data=df_0,
 feature="education_of_employee",
 xlabel="Number of Applications",
 ylabel="Education Level",
 perc=True,
)

<IPython.core.display.Javascript object>

Observations
• The majority of the applicants have either bachelor's degrees (40.2%) or master's

degrees (37.8%).
• Only 8.6% of the applicants have doctorate degrees.

Job Experience
Use user-defined function labeled_barplot() to examine distribution
of data
labeled_barplot(
 data=df_0,
 feature="has_job_experience",
 xlabel="Number of Applications",
 ylabel="Job Experience",
 perc=True,
)

<IPython.core.display.Javascript object>

Observations
• More than half (58%) of the applicants have job experience.

Job Training Requirement
Use user-defined function labeled_barplot() to examine distribution
of data
labeled_barplot(
 data=df_0,
 feature="requires_job_training",
 xlabel="Number of Applications",
 ylabel="Training Requirement",
 perc=True,
)

<IPython.core.display.Javascript object>

Observations
• The vast majority (>88%) of the jobs do not require the applicants to receive training.

Employer Region
Use user-defined function labeled_barplot() to examine distribution
of data
labeled_barplot(
 data=df_0,
 feature="region_of_employment",
 xlabel="Number of Applications",
 ylabel="Employer Region",
 perc=True,
)

<IPython.core.display.Javascript object>

Observations
• Most of the applications are for employment in the Northeast, South, and West regions

of the United States. This could be expected because the majority of the tech companies
are in those regions and the populations of those regions are higher than the other
regions of the United States.

• The Island region has the lowest number (1.5%) of work visa applicants.

Position Type
Use user-defined function labeled_barplot() to examine distribution
of data
labeled_barplot(
 data=df_0,
 feature="full_time_position",
 xlabel="Number of Applications",
 ylabel="Full-Time Position",
 perc=True,
)

<IPython.core.display.Javascript object>

Observations
• More than 89% of the applications are related to full-time employment.

Wage Unit
Use user-defined function labeled_barplot() to examine distribution
of data
labeled_barplot(
 data=df_0,
 feature="unit_of_wage",
 xlabel="Number of Applications",
 ylabel="Wage Unit",
 perc=True,
)

<IPython.core.display.Javascript object>

Observations
• The dominant majority (90%) of the applications are for the jobs whose prevailing wages

are computed per year.

Case Status
Use user-defined function labeled_barplot() to examine distribution
of data
labeled_barplot(
 data=df_0,
 feature="case_status",
 xlabel="Number of Applications",
 ylabel="Case Status",
 perc=True,
)

<IPython.core.display.Javascript object>

Observations
• Almost two-thirds of the visa applications are certified.

Number of Employees
Use user-defined function histogram_boxplot() to examine
distribution of data
histogram_boxplot(
 data=df_0,
 feature="no_of_employees",
 xlabel="Number of Employees",
 ylabel="Number of Applications",
 kde=True,
 bins=60,
)

<IPython.core.display.Javascript object>

Observations
• There is a large variation in the number of employees of the employers.
• The distribution is highly right-skewed.
• Not all the detected outliers per 1.5-IQR rule shall be treated as outliers, because, in

2016, there existed employers in the United States that actually had hundreds of
thousands of employees. Here, per the shown distribution, a cut-off value of 450000 is
considered for the number of employees.

b) Bivariate Analysis
Since the ultimate goal of this project is producing models to predict employment visa
certification, the focus of the bivariate analyses will be on the effects of different independent
variables on the target variable, i.e., case_status.

User-Defined Functions for Bivariate Plots
User-defined function to plot a stacked barplot
def stacked_barplot(data, predictor, target, xlabel, ylabel):

 """
 Print the category counts and plot a stacked bar chart

 data: dataframe
 predictor: independent variable
 target: target variable
 xlabel: label of x-axis
 ylabel: label of y-axis
 """

 count = data[predictor].nunique()
 sorter = data[target].value_counts().index[-1]
 tab1 = pd.crosstab(data[predictor], data[target],
margins=True).sort_values(
 by=sorter, ascending=False
)
 print(tab1)
 print("-" * 120)
 tab = pd.crosstab(data[predictor], data[target],
normalize="index").sort_values(
 by=sorter, ascending=False
)
 tab.plot(kind="bar", stacked=True, figsize=(count + 2, 4))

 plt.legend(loc="upper left", bbox_to_anchor=(1, 1), fontsize=16)
 plt.xlabel(xlabel, fontsize=16)
 plt.ylabel(ylabel, fontsize=16)

 plt.xticks(fontsize=14)
 plt.yticks(fontsize=14)

 plt.show()

<IPython.core.display.Javascript object>

User-defined function to plot distributions w.r.t. target
def distribution_plot_wrt_target(data, predictor, target, plabel,
tlabel):
 """
 Print the category counts and plot a stacked bar chart

 data: dataframe
 predictor: independent variable
 target: target variable
 plabel: label of predictor axes
 tlabel: label of target axes
 """

 fig, axs = plt.subplots(2, 2, figsize=(12, 10))

 target_uniq = data[target].unique()

 sns.histplot(
 data=data[data[target] == target_uniq[0]],
 x=predictor,
 kde=True,
 ax=axs[0, 0],
 color="teal",
 stat="density",
)
 axs[0, 0].set_title("Distribution of predictor for target = " +
str(target_uniq[0]))
 axs[0, 0].set_xlabel(plabel, fontsize=16)
 axs[0, 0].set_ylabel("Density", fontsize=16)

 sns.histplot(
 data=data[data[target] == target_uniq[1]],
 x=predictor,
 kde=True,
 ax=axs[0, 1],
 color="orange",
 stat="density",
)
 axs[0, 1].set_title("Distribution of predictor for target = " +
str(target_uniq[1]))
 axs[0, 1].set_xlabel(plabel, fontsize=16)
 axs[0, 1].set_ylabel("Density", fontsize=16)

 sns.boxplot(data=data, x=target, y=predictor, ax=axs[1, 0],
palette="gist_rainbow")
 axs[1, 0].set_title("Boxplot w.r.t target")
 axs[1, 0].set_xlabel(tlabel, fontsize=16)
 axs[1, 0].set_ylabel(plabel, fontsize=16)

 sns.boxplot(
 data=data,
 x=target,
 y=predictor,
 ax=axs[1, 1],
 showfliers=False,
 palette="gist_rainbow",
)
 axs[1, 1].set_title("Boxplot (without outliers) w.r.t target")
 axs[1, 1].set_xlabel(tlabel, fontsize=16)
 axs[1, 1].set_ylabel(plabel, fontsize=16)

 plt.tight_layout()
 plt.show()

<IPython.core.display.Javascript object>

Case Status vs. Continent of Origin

Leading Question: How does the visa status vary across different continents?

Use user-defined function stacked_barplot() to examine case
certification likelihoods vs continent of origin
stacked_barplot(
 data=df_0,
 predictor="continent",
 target="case_status",
 xlabel="Continent of Origin",
 ylabel="Fraction of Applications",
)

case_status Certified Denied All

continent

All 17018 8462 25480

Asia 11012 5849 16861

North America 2037 1255 3292

Europe 2957 775 3732

South America 493 359 852

Africa 397 154 551

Oceania 122 70 192

--
--

<IPython.core.display.Javascript object>

Observations
• Among different continents, Europe has the highest work visa certification rate (79%).
• The lowest work visa certification rate belongs to South America (58%).

Case Status vs. Education Level

Leading Question: Those with higher education may want to travel abroad for a well-paid job.
Does education play a role in Visa certification?

Use user-defined function stacked_barplot() to examine case
certification likelihoods vs education level
stacked_barplot(
 data=df_0,
 predictor="education_of_employee",
 target="case_status",
 xlabel="Education Level",
 ylabel="Fraction of Applications",
)

case_status Certified Denied All

education_of_employee

All 17018 8462 25480

Bachelor's 6367 3867 10234

High School 1164 2256 3420

Master's 7575 2059 9634

Doctorate 1912 280 2192

--
--

<IPython.core.display.Javascript object>

Observations
• It is clear that the higher the education level of an applicants is, the more their chances of

visa certification are.
• More specifically, while the visa certification likelihood of the applicants of a doctorate

degree is 87%, this likelihood is only 34% for the applicants of high school education.

Case Status vs. Job Experience

Leading Question: Experienced professionals might look abroad for opportunities to improve
their lifestyles and career development. Does work experience influence visa status?

Use user-defined function stacked_barplot() to examine case
certification likelihoods vs job experience
stacked_barplot(
 data=df_0,
 predictor="has_job_experience",
 target="case_status",
 xlabel="Job Experience",
 ylabel="Fraction of Applications",
)

case_status Certified Denied All

has_job_experience

All 17018 8462 25480

N 5994 4684 10678

Y 11024 3778 14802

--
--

<IPython.core.display.Javascript object>

Observations
• Having job experience is found to have a positive effect on the visa certification

likelihood.
• More specifically, about 74% of the experienced applicants are granted visas, while this

percentages is only 56% for the inexperienced applicants.

Case Status vs. Job Training Requirement
Use user-defined function stacked_barplot() to examine case
certification likelihoods vs training requirement
stacked_barplot(
 data=df_0,
 predictor="requires_job_training",
 target="case_status",
 xlabel="Training Requirement",
 ylabel="Fraction of Applications",
)

case_status Certified Denied All

requires_job_training

All 17018 8462 25480

N 15012 7513 22525

Y 2006 949 2955

--
--

<IPython.core.display.Javascript object>

Observations
• The visa certification likelihood is found nearly unaffected by the job training

requirement.

Case Status vs. Employer Region
Use user-defined function stacked_barplot() to examine case
certification likelihoods vs employer region
stacked_barplot(
 data=df_0,
 predictor="region_of_employment",
 target="case_status",
 xlabel="Employer Region",
 ylabel="Fraction of Applications",
)

case_status Certified Denied All

region_of_employment

All 17018 8462 25480

Northeast 4526 2669 7195

West 4100 2486 6586

South 4913 2104 7017

Midwest 3253 1054 4307

Island 226 149 375

--
--

<IPython.core.display.Javascript object>

Observations
• It appears that the visa applications filed by the employers within the Midwest region

have the highest probability (~76%) of certification.
• The employers located in the Northeast, West, and Island regions have lower chances

(60-63%) of visa certification.

Case Status vs. Position Type
Use user-defined function stacked_barplot() to examine case
certification likelihoods vs position type
stacked_barplot(
 data=df_0,
 predictor="full_time_position",
 target="case_status",
 xlabel="Full-Time Position",
 ylabel="Fraction of Applications",
)

case_status Certified Denied All

full_time_position

All 17018 8462 25480

Y 15163 7610 22773

N 1855 852 2707

--
--

<IPython.core.display.Javascript object>

Observations
• Visa certification seems to be unaffected by whether a position is full-time or part-time.

Case Status vs. Wage Unit

Leading Question: In the United States, employees are paid at different intervals. Which pay unit
is most likely to be certified for a visa?

Use user-defined function stacked_barplot() to examine case
certification likelihoods vs unit of prevailing wage
stacked_barplot(
 data=df_0,

 predictor="unit_of_wage",
 target="case_status",
 xlabel="Wage Unit",
 ylabel="Fraction of Applications",
)

case_status Certified Denied All

unit_of_wage

All 17018 8462 25480

Year 16047 6915 22962

Hour 747 1410 2157

Week 169 103 272

Month 55 34 89

--
--

<IPython.core.display.Javascript object>

Observations
• Those applicants whose wage unit is year are more likely than other applicants to be

certified for a visa (~70% likelihood).

• The applicants who are paid by hour are the least likely to be certified for a visa (~35%
likelihood). This could be predicted, because hourly jobs are usually less important for
the growth of the United States and they could be done by normal American workers.

Case Status vs. Number of Employees
Use user-defined function distribution_plot_wrt_target() to examine
case certification likelihoods across data categories
distribution_plot_wrt_target(
 data=df_0,
 predictor="no_of_employees",
 target="case_status",
 plabel="Number of Employees",
 tlabel="Case Status",
)

<IPython.core.display.Javascript object>

Observations
• A very small difference is observed between the distributions of the employer's number

of employees for those applications that are denied and those that are certified. As a
result, it seems that the number of employees has insignificant effect on the likelihood of
visa certification.

Training Requirement vs. Job Experience
Use seaborn heatmap to compare number of applications pivoted on job
experience and training requirement

Create a count pivot table with respect to columns
has_job_experience and requires_job_training
pt = df_0.pivot_table(
 values="case_status",
 index="has_job_experience",
 columns="requires_job_training",
 aggfunc="count",
)

Plot a heatmap
plt.figure(figsize=(6, 4))
sns.heatmap(pt, square=True, annot=True, fmt="g")
plt.ylabel("Job Experience", fontsize=15)
plt.xlabel("Training Requirement", fontsize=15)

Text(0.5, 14.722222222222216, 'Training Requirement')

<IPython.core.display.Javascript object>

Observations
• Reasonably, a higher percentage of the applicants who have no job experience require

job training than the applicants who have job experience (16% vs. ~9%).

Job Training Requirement vs. Continent
Use user-defined function stacked_barplot() to examine job training
requirement vs continent of origin of applicants
stacked_barplot(
 data=df_0,
 predictor="continent",
 target="requires_job_training",
 xlabel="Continent of Origin",
 ylabel="Fraction of Applications",
)

requires_job_training N Y All

continent

All 22525 2955 25480

Asia 15113 1748 16861

Europe 2993 739 3732

North America 3044 248 3292

South America 702 150 852

Africa 510 41 551

Oceania 163 29 192

--
--

<IPython.core.display.Javascript object>

Observations
• Among the applicants from different continents, a smaller ratio of those from Africa and

North America need training than those from other continents.
• The highest ratio of the applicants who need training belongs to those from Europe.

Data Preprocessing
Create a copy of data frame before preprocessing
df_1 = df_0.copy()

<IPython.core.display.Javascript object>

a) Treatment of Missing Values
Based on the initial evaluations, no values were missing in any of the columns. However, there
were rows with unrealistic non-positive (<0) values of no_of_employees. To address this
problem, these values are replaced with the median of no_of_employees.

Identify rows with non-positive no_of_employees
neg_employee_no_rows = df_1.no_of_employees <= 0

Print number of rows with non-positive no_of_employees
print(
 f"There are {neg_employee_no_rows.sum()} rows with non-positive
number of employees."
)

Replace negative values in column no_of_employees with its median
df_1.loc[neg_employee_no_rows, "no_of_employees"] =
df_1.no_of_employees.median()

Double-check minimum value of no_of_employees
print(f"The new minimum number of employees is
{df_1.no_of_employees.min()}.")

There are 33 rows with non-positive number of employees.

The new minimum number of employees is 12.

<IPython.core.display.Javascript object>

b) Feature Engineering
The feature yr_of_estab is converted to yrs_snc_estab, containing the years since
establishment. Also, to make the prevailing wages (in the column prevailing_wage)
interpretable across the rows, they are all transformed into an equivalent hourly wage and are
saved in a new column, hourly_wage. The columns yr_of_estab and prevailing_wage
are dropped subsequently.

Add a new column, yrs_snc_estab, including years since establishment
- final year is 2016, when data is gathered
df_1["yrs_snc_estab"] = 2016 - df_1.yr_of_estab

Drom yr_of_estab
df_1.drop("yr_of_estab", axis=1, inplace=True)

Create a column including equivalent hourly wages - it is assumed
that:
A year includes 2080 work-hours
A month includes 173 work-hours
A week includes 40 work-hours
df_1["hourly_wage"] = df_1["prevailing_wage"]
df_1.loc[df_1.unit_of_wage == "Year", "hourly_wage"] = (
 df_1.loc[df_1.unit_of_wage == "Year", "hourly_wage"] / 2080.0
)
df_1.loc[df_1.unit_of_wage == "Month", "hourly_wage"] = (
 df_1.loc[df_1.unit_of_wage == "Month", "hourly_wage"] / 173.0
)

df_1.loc[df_1.unit_of_wage == "Week", "hourly_wage"] = (
 df_1.loc[df_1.unit_of_wage == "Week", "hourly_wage"] / 40.0
)

Drom yr_of_estab
df_1.drop("prevailing_wage", axis=1, inplace=True)

Check sample rows of updated data
df_1.sample(10, random_state=1)

 continent education_of_employee has_job_experience \
17639 Asia Bachelor's Y
23951 Oceania Bachelor's N
8625 Asia Master's N
20206 Asia Bachelor's Y
7471 Europe Bachelor's Y
3433 Asia Bachelor's Y
24440 Europe High School N
12104 Asia Master's Y
15656 Asia Bachelor's N
23110 North America Bachelor's Y

 requires_job_training no_of_employees region_of_employment \
17639 N 567 Midwest
23951 N 619 Midwest
8625 N 2635 South
20206 Y 3184 Northeast
7471 N 4681 West
3433 N 222 South
24440 Y 3278 South
12104 N 1359 West
15656 N 2081 West
23110 N 854 Northeast

 unit_of_wage full_time_position case_status yrs_snc_estab
hourly_wage
17639 Year Y Certified 24
12.905245
23951 Year Y Certified 78
31.932683
8625 Hour Y Certified 11
887.292100
20206 Year Y Certified 30
23.767212
7471 Year Y Denied 88
23.973649
3433 Hour Y Certified 27
813.726100
24440 Year Y Denied 22
98.532880

12104 Year N Certified 19
97.229346
15656 Year Y Denied 13
53.708183
23110 Hour Y Denied 18
444.825700

<IPython.core.display.Javascript object>

Check statistical summary of numeric data in updated data
df_1.describe().T

 count mean std min
25% \
no_of_employees 25480.0 5669.797645 22877.372247 12.000000
1028.00000
yrs_snc_estab 25480.0 36.590071 42.366929 0.000000
11.00000
hourly_wage 25480.0 94.902995 278.176919 0.048077
22.64806

 50% 75% max
no_of_employees 2109.000000 3504.000000 602069.00000
yrs_snc_estab 19.000000 40.000000 216.00000
hourly_wage 39.826663 60.012036 7004.39875

<IPython.core.display.Javascript object>

Observations
• The mean and median values of yrs_snc_estab are ~37 and 19 years, respectively. The

oldest employer was established 216 years before the data collection.
• The minimum and maximum values of hourly_wage are 0.05 and ~7004 (probably in

dollars), respectively, so the variation of this variable is very large. The mean hourly wage
is ~95.

c) Detection and Treatment of Outliers
Detection of Outliers

Initially, the 1.5-IQR rule is used to detect potential outliers. However, it is noted that all the
values detected as outlier by this method are not always outliers.

Create a list of column names including numeric data
num_cols = df_1.select_dtypes(include=np.number).columns.tolist()

Use boxplots with 1.5*IQR whiskers for each numeric variable to
detect potential outliers
plt.figure(figsize=(9, 3))

for i, variable in enumerate(num_cols):
 plt.subplot(1, 3, i + 1)
 plt.boxplot(df_1[variable], whis=1.5)
 plt.tight_layout()
 plt.title(variable)

plt.show()

<IPython.core.display.Javascript object>

Observations
• Given the discussions provided in the initial EDA section, not all the outliers detected

based on the 1.5-IQR rule are actual outliers. Here, merely to remove very large
infrequent values, the following maximum cut-off values are considered for the above
three variables:

– no_of_employees: 450000
– yrs_snc_estab: 200
– hourly_wage: 4000

Treatment of Outliers
• The detected upper outliers are replaced with the maximum values of the respective

columns in the absence of the outliers.

Replace outliers in no_of_employees
df_1.loc[df_1.no_of_employees > 450000, "no_of_employees"] = df_1[
 df_1.no_of_employees <= 450000
].no_of_employees.max()

Replace outliers in yrs_snc_estab
df_1.loc[df_1.yrs_snc_estab > 200, "yrs_snc_estab"] = df_1[
 df_1.yrs_snc_estab <= 200
].yrs_snc_estab.max()

Replace outliers in hourly_wage
df_1.loc[df_1.hourly_wage > 4000, "hourly_wage"] = df_1[

 df_1.hourly_wage <= 4000
].hourly_wage.max()

Use boxplots to check distributions again
plt.figure(figsize=(9, 3))

for i, variable in enumerate(num_cols):
 plt.subplot(1, 3, i + 1)
 plt.boxplot(df_1[variable], whis=1.5)
 plt.tight_layout()
 plt.title(variable)

plt.show()

<IPython.core.display.Javascript object>

Secondary EDA
The focus of the secondary EDA is on the new variables created in the section Data
Preprocessing, while correlation coefficients between the final numeric variables are also
examined.

Univariate Analysis

Years Since Establishment
Use user-defined function histogram_boxplot() to examine
distribution of data
histogram_boxplot(
 data=df_1,
 feature="yrs_snc_estab",
 xlabel="Years Since Establishment",
 ylabel="Number of Applications",
 kde=True,
 bins=40,
)

<IPython.core.display.Javascript object>

Observations
• The distribution is quite right-skewed and the majority of the employers are less than 40

years old.
• As mentioned in the previous section on the treatment of outliers, the detected outliers

per 1.5-IQR rule are not actually outliers.

Hourly Wage
Use user-defined function histogram_boxplot() to examine
distribution of data
histogram_boxplot(
 data=df_1,
 feature="hourly_wage",
 xlabel="Hourly Wage",
 ylabel="Number of Applications",
 kde=True,
 bins=70,
)

<IPython.core.display.Javascript object>

Observations
• The distribution of the computed equivalent hourly wage is highly right-skewed and the

majority of the applications are for the positions with less than 100 (dollars) of equivalent
hourly wage.

• Since there are certain positions in certain industries that are paid millions of dollars per
year, the detected outliers are not actual outliers.

Bivariate Analysis

Linear Correlation Coefficients

The linear correlation coefficients are only determined between the numeric variables, i.e.,
no_of_employees, yrs_snc_estab, and hourly_wage.

Create a list of column names including numeric data
num_cols = df_1.select_dtypes(include=np.number).columns.tolist()

Compute correlation coefficients
rhos = df_1[num_cols].corr()

Plot heatmap
plt.figure(figsize=(8, 6)) # set figure size

p = sns.heatmap(
 rhos,
 annot=True,
 square=True,
 vmin=-1,
 vmax=1,
 fmt=".2f",
 cmap="Spectral",
) # create heatmap

p.set_title("Correlation Coefficients", fontsize=16)
set chart's title

Text(0.5, 1.0, 'Correlation Coefficients')

<IPython.core.display.Javascript object>

Observations
• Negligible linear correlation is observed between the numeric variables.

Pairplot
Add case_status to list of column names including numeric data
num_cols = num_cols + ["case_status"]

Create a pairplot to see distributions of and relationships between
variations of numeric data
sns.pairplot(data=df_1[num_cols], hue="case_status", diag_kind="kde",
aspect=1)

<seaborn.axisgrid.PairGrid at 0x7faf2fe0d0d0>

<IPython.core.display.Javascript object>

Observations
• No linear correlation is observed between the numeric variables.
• It is hard to identify the effects of the above variables on the visa certification likelihood.

Case Status vs. Hourly Wage

Leading Question: The US government has established a prevailing wage to protect local talent
and foreign workers. How does the visa status change with the prevailing wage?

Use user-defined function distribution_plot_wrt_target() to examine
case certification likelihoods across data categories
distribution_plot_wrt_target(
 data=df_1,
 predictor="hourly_wage",
 target="case_status",
 plabel="Hourly Wage",
 tlabel="Case Status",
)

<IPython.core.display.Javascript object>

Observations
• It appears that a decrease in the equivalent hourly wage would lead to an increase in the

likelihood of visa certification. This could be justified by the fact that the jobs that are
paid higher could be more easily filled by American workers, making the emplyment of
aliens unjustifiable.

Hourly Wage vs. Education Level
Use seaborn boxplot to compare distributions of hourly wage for
different education levels without outliers
plt.figure(figsize=(6, 4))
set figure size
sns.boxplot(
 data=df_1,
 y="education_of_employee",
 x="hourly_wage",

 showmeans=True,
 showfliers=False,
 palette="Set2",
) # create box plot

set axis labels
plt.xlabel("Hourly Wage", fontsize=16)
plt.ylabel("Education Level", fontsize=16)

set font size for axis ticks
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)

(array([0, 1, 2, 3]),
 [Text(0, 0, 'High School'),
 Text(0, 1, "Master's"),
 Text(0, 2, "Bachelor's"),
 Text(0, 3, 'Doctorate')])

<IPython.core.display.Javascript object>

Observations
• Surprisingly, on average, the employees of less education (e.g., high school and

bachelor's degree) seem to be paid more in terms of equivalent hourly wage than the
employees of higher education, particularly, those of a doctorate degree.

Hourly Wage vs. Job Experience
Use seaborn boxplot to compare distributions of hourly wage with
respect to job experience
plt.figure(figsize=(6, 2))
set figure size
sns.boxplot(
 data=df_1,
 y="has_job_experience",
 x="hourly_wage",
 showmeans=True,
 showfliers=False,
 palette="Set2",
) # create box plot

set axis labels
plt.xlabel("Hourly Wage", fontsize=16)
plt.ylabel("Job Experience", fontsize=16)

set font size for axis ticks
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)

(array([0, 1]), [Text(0, 0, 'N'), Text(0, 1, 'Y')])

<IPython.core.display.Javascript object>

Observations
• Surprisingly, on average, those employees that have job experience seem to receive

lower equivalent hourly wage than those who have no job experience.

Hourly Wage vs. Job Training
Use seaborn boxplot to compare distributions of hourly wage with
respect to job training requirement
plt.figure(figsize=(6, 2))

set figure size
sns.boxplot(
 data=df_1,
 y="requires_job_training",
 x="hourly_wage",
 showmeans=True,
 showfliers=False,
 palette="Set2",
) # create box plot

set axis labels
plt.xlabel("Hourly Wage", fontsize=16)
plt.ylabel("Training Requirement", fontsize=16)

set font size for axis ticks
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)

(array([0, 1]), [Text(0, 0, 'N'), Text(0, 1, 'Y')])

<IPython.core.display.Javascript object>

Observations
• On average, the equivalent hourly wage of the applicants who do not require training is

higher than those who require training.

Case Status vs. Years Since Establishment
Use user-defined function distribution_plot_wrt_target() to examine
case certification likelihoods across data categories
distribution_plot_wrt_target(
 data=df_1,
 predictor="yrs_snc_estab",
 target="case_status",
 plabel="Years Since Establishment",

 tlabel="Case Status",
)

<IPython.core.display.Javascript object>

Observations
• A very small difference is observed between the distributions of the employer's age for

those applications that are denied and those that are certified. As a result, it seems that
the number of years since establishment has insignificant effect on the likelihood of visa
certification.

Number of Employees vs. Years Since Establishment
Use seaborn jointplot to compare distributions of number of
employees vs years since employer's establishment
plt.figure(figsize=(4, 4))
set figure size
sns.jointplot(data=df_1, x="yrs_snc_estab", y="no_of_employees",

kind="hex", bins=10)
create joint plot

plt.xlabel("Years Since Establishment", fontsize=16)
set x-axis label
plt.ylabel("Number of Employees", fontsize=16)
set y-axis label

Text(37.597222222222214, 0.5, 'Number of Employees')

<Figure size 400x400 with 0 Axes>

<IPython.core.display.Javascript object>

Observations
• Older employers seem to tend to have slightly smaller number of employees compared

to the younger employers.

Data Preparation for Modeling

a) Encoding Categorical Data
Encoding the values in the columns has_job_experience, requires_job_training,
full_time_position, case_status and education_of_employee.

has_job_experience, requires_job_training, and full_time_position:
Replace 'Y' with 1 and 'N' with 0
df_1.has_job_experience = df_1.has_job_experience.apply(lambda x: 1 if
x == "Y" else 0)
df_1.requires_job_training = df_1.requires_job_training.apply(
 lambda x: 1 if x == "Y" else 0
)
df_1.full_time_position = df_1.full_time_position.apply(lambda x: 1 if
x == "Y" else 0)

case_status:
Replace 'Certified' with 1 and 'Denied' with 0
df_1.case_status = df_1.case_status.apply(lambda x: 1 if x ==
"Certified" else 0)

education_of_employee:
Replace 'High School' with 1, 'Bachelor's' with 2, 'Master's' with
3, and 'Doctarate' with 4
df_1.education_of_employee = df_1.education_of_employee.apply(
 lambda x: 1
 if x == "High School"
 else (2 if x == "Bachelor's" else (3 if x == "Master's" else 4))
)

Check updated sample rows
df_1.sample(10, random_state=1)

 continent education_of_employee has_job_experience \
17639 Asia 2 1
23951 Oceania 2 0
8625 Asia 3 0
20206 Asia 2 1
7471 Europe 2 1
3433 Asia 2 1
24440 Europe 1 0

12104 Asia 3 1
15656 Asia 2 0
23110 North America 2 1

 requires_job_training no_of_employees region_of_employment \
17639 0 567 Midwest
23951 0 619 Midwest
8625 0 2635 South
20206 1 3184 Northeast
7471 0 4681 West
3433 0 222 South
24440 1 3278 South
12104 0 1359 West
15656 0 2081 West
23110 0 854 Northeast

 unit_of_wage full_time_position case_status yrs_snc_estab \
17639 Year 1 1 24
23951 Year 1 1 78
8625 Hour 1 1 11
20206 Year 1 1 30
7471 Year 1 0 88
3433 Hour 1 1 27
24440 Year 1 0 22
12104 Year 0 1 19
15656 Year 1 0 13
23110 Hour 1 0 18

 hourly_wage
17639 12.905245
23951 31.932683
8625 887.292100
20206 23.767212
7471 23.973649
3433 813.726100
24440 98.532880
12104 97.229346
15656 53.708183
23110 444.825700

<IPython.core.display.Javascript object>

Separation of Dependent and Independent Variables
Create a data frame with only independent variables
X = df_1.drop(["case_status"], axis=1)

Create a series with only dependent variable
Y = df_1.case_status

Print some rows of X and Y data frames to check them
print("Independent Variables\n", "=" * 80, "\n", X.sample(5,
random_state=1))
print("\n\nDependent Variables\n", "=" * 80, "\n", Y.sample(5,
random_state=1))

Independent Variables

==
==========

 continent education_of_employee has_job_experience \

17639 Asia 2 1

23951 Oceania 2 0

8625 Asia 3 0

20206 Asia 2 1

7471 Europe 2 1

 requires_job_training no_of_employees region_of_employment \

17639 0 567 Midwest

23951 0 619 Midwest

8625 0 2635 South

20206 1 3184 Northeast

7471 0 4681 West

 unit_of_wage full_time_position yrs_snc_estab hourly_wage

17639 Year 1 24 12.905245

23951 Year 1 78 31.932683

8625 Hour 1 11 887.292100

20206 Year 1 30 23.767212

7471 Year 1 88 23.973649

Dependent Variables

==
==========

 17639 1

23951 1

8625 1

20206 1

7471 0

Name: case_status, dtype: int64

<IPython.core.display.Javascript object>

b) Creating Dummy Variables
Create dummy variables for the categorical columns, i.e., unit_of_wage, continent, and
region_of_employment.

Use pandas function get_dummies to create dummy variables and drop
their first one
X = pd.get_dummies(X, drop_first=True)

Check updated independent variables data frame
X.sample(5, random_state=1)

 education_of_employee has_job_experience
requires_job_training \
17639 2 1
0
23951 2 0
0
8625 3 0
0
20206 2 1
1
7471 2 1
0

 no_of_employees full_time_position yrs_snc_estab hourly_wage
\
17639 567 1 24 12.905245

23951 619 1 78 31.932683

8625 2635 1 11 887.292100

20206 3184 1 30 23.767212

7471 4681 1 88 23.973649

 continent_Asia continent_Europe continent_North America \
17639 1 0 0
23951 0 0 0
8625 1 0 0
20206 1 0 0
7471 0 1 0

 continent_Oceania continent_South America \
17639 0 0
23951 1 0
8625 0 0
20206 0 0
7471 0 0

 region_of_employment_Midwest region_of_employment_Northeast \
17639 1 0
23951 1 0
8625 0 0
20206 0 1
7471 0 0

 region_of_employment_South region_of_employment_West \
17639 0 0
23951 0 0
8625 1 0
20206 0 0
7471 0 1

 unit_of_wage_Month unit_of_wage_Week unit_of_wage_Year
17639 0 0 1
23951 0 0 1
8625 0 0 0
20206 0 0 1
7471 0 0 1

<IPython.core.display.Javascript object>

c) Splitting Data into Training and Test Sets
Use function train_test_split to create training and testing data
sets for both dependnet and independent variables
X_train, X_test, Y_train, Y_test = train_test_split(
 X, Y, test_size=0.3, random_state=1, stratify=Y
)

Check number of rows in each data set
print("Number of rows in training data set =", X_train.shape[0])
print("\nNumber of rows in test data set =", X_test.shape[0])

Show percentage of number of rows in each data set
print("\nPercentage of classes in training set:")
print(Y_train.value_counts(normalize=True))
print("\nPercentage of classes in test set:")
print(Y_test.value_counts(normalize=True))

Number of rows in training data set = 17836

Number of rows in test data set = 7644

Percentage of classes in training set:

1 0.667919

0 0.332081

Name: case_status, dtype: float64

Percentage of classes in test set:

1 0.667844

0 0.332156

Name: case_status, dtype: float64

<IPython.core.display.Javascript object>

Building Prediction Models

a) Evaluation Criterion
Possible Errors

• Prediction of visa certification while the visa will actually be denied, i.e., false positive.
• Prediction of visa denial while the visa will actually be certified, i.e., false negative.

More Important Error

A false positive would lead to the waste of the OFLC's time and staff resources, while a false
negative would prevent a qualified applicant who could fill essential jobs in the United States
from receiving work visa. Therefore, it appears that both errors could be equally important for
the OFLC to be minimized.

Optimal Performance Measure

Given the foregoing, to minimize both the false positive and false negative errors
simoltaneously, it is decided that F1-score could be the optimal performance measure for the
models built subsequently. That is, the best model would maximize F1-score, while it would not
be overfitting or underfitting the training data.

User-Defined Functions for Model Performance Evaluation
User-defined function to compute different performance metrics to
evaluate a classification model built using sklearn
def get_metrics_score(model, flag=True):
 """
 model: classifier to predict values of Y
 """

 # Predict Y using independent variables
 pred_train = model.predict(X_train)
 pred_test = model.predict(X_test)

 # Compute performance metrics
 train_acc = accuracy_score(Y_train, pred_train) # accuracy
 test_acc = accuracy_score(Y_test, pred_test)

 train_recall = recall_score(Y_train, pred_train) # recall
 test_recall = recall_score(Y_test, pred_test)

 train_precision = precision_score(Y_train, pred_train) #
precision
 test_precision = precision_score(Y_test, pred_test)

 train_f1 = f1_score(Y_train, pred_train) # f1-score
 test_f1 = f1_score(Y_test, pred_test)

 # Create a dataframe of metrics
 df_perf = pd.DataFrame(
 {
 "Accuracy": [train_acc, test_acc],
 "Recall": [train_recall, test_recall],
 "Precision": [train_precision, test_precision],
 "F1": [train_f1, test_f1],
 },
 index=["Training", "Test"],
)

 return df_perf

<IPython.core.display.Javascript object>

User-defined function to plot the confusion_matrix of a
classification model built using sklearn based on test set
def make_confusion_matrix(model):
 """
 model: classifier to predict values of Y
 """
 Y_pred = model.predict(X_test)
 cm = confusion_matrix(Y_test, Y_pred)
 labels = np.asarray(
 [
 ["{0:0.0f}".format(item) + "\n{0:.2%}".format(item /
cm.flatten().sum())]
 for item in cm.flatten()
]
).reshape(2, 2)

 plt.figure(figsize=(6, 4))
 sns.heatmap(cm, annot=labels, fmt="")
 plt.title("Test Set's Confusion Matrix", fontsize=16)
 plt.ylabel("Actual Label", fontsize=15)
 plt.xlabel("Predicted Label", fontsize=15)

<IPython.core.display.Javascript object>

Decision Tree Classifier
Use function DecisionTreeClassifier from sklearn to build model -
consider `gini` criterion to split data at nodes
dcsn_tree = DecisionTreeClassifier(criterion="gini", random_state=1)
dcsn_tree.fit(X_train, Y_train)

DecisionTreeClassifier(random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(dcsn_tree)

Check performance of model on both training and test data sets
perf_dcsn_tree = get_metrics_score(dcsn_tree)
perf_dcsn_tree

 Accuracy Recall Precision F1
Training 1.000000 1.000000 1.000000 1.000000
Test 0.652669 0.736729 0.741522 0.739118

<IPython.core.display.Javascript object>

Observations
• The initial decision tree model works very well for the training data set - all performance

metrics, i.e., accuracy , recall, precision, and F1-score are 1.00.
• However, the performance is not as good for the test set (F1-score is 0.74), implying

overfitting. As a result, there is need for hyperparameter tuning through grid search.

Decision Tree Classifier with Hyperparameter Tuning
Choose type of classifier
tnd_dcsn_tree = DecisionTreeClassifier(random_state=1)

Form grid of parameters to search in
grid_para = {
 "class_weight": ["balanced", None],
 "max_depth": np.arange(2, 21, 2),
 "max_leaf_nodes": np.arange(2, 21, 2),
 "min_samples_split": [100, 200, 400, 800],
 "min_impurity_decrease": [0.0001, 0.001, 0.01],
}

Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

Run GridSearch
grid_obj = GridSearchCV(tnd_dcsn_tree, grid_para, scoring=scorer,
cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

Set classifer to best combination of parameters
tnd_dcsn_tree = grid_obj.best_estimator_

Fit best decision tree to training data
tnd_dcsn_tree.fit(X_train, Y_train)

DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14,
 min_impurity_decrease=0.0001,
min_samples_split=100,
 random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(tnd_dcsn_tree)

Check performance of model on both training and test data sets
perf_tnd_dcsn_tree = get_metrics_score(tnd_dcsn_tree)
perf_tnd_dcsn_tree

 Accuracy Recall Precision F1
Training 0.737105 0.912784 0.748692 0.822635
Test 0.729853 0.911851 0.742424 0.818462

<IPython.core.display.Javascript object>

Observations
• The tuned decision tree model has a better overall performance than the initial decision

tree model. Specifically, all its metrics are almost equal for both training and test data
sets, indicating that the model is not overfitting anymore.

• The F1-score for the test set has been increased from 0.74 for the initial model to 0.82
for the tuned model.

Create a list of column names - features of tree
col_names = list(X.columns)

Check importances of various features of tuned tree
importances = tnd_dcsn_tree.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet",
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()

<IPython.core.display.Javascript object>

Observations
• The top four independent variables of importance in the tuned decision tree model are

education_of_employee, has_job_experience, unit_of_wage_Year, and
continent_Europe.

Bagging Classifier
Use function BaggingClassifier from sklearn to build model
bagging = BaggingClassifier(random_state=1)
bagging.fit(X_train, Y_train)

BaggingClassifier(random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(bagging)

Check performance of model on both training and test data sets
perf_bagging = get_metrics_score(bagging)
perf_bagging

 Accuracy Recall Precision F1
Training 0.984077 0.985562 0.990551 0.98805
Test 0.690345 0.770813 0.766758 0.76878

<IPython.core.display.Javascript object>

Observations
• Compared to the initial decision tree model (not tuned), this model has slightly better

performance on the test data set.

• However, considering the very high performance metrics for the training data set, it is
clear that the model is overfitting and needs hyperparameter tuning.

Bagging Classifier with Hyperparameter Tuning
Choose type of classifier
tnd_bagging = BaggingClassifier(random_state=1)

Form grid of parameters to search in
grid_para = {
 "max_samples": [0.7, 0.8, 0.9, 1.0],
 "max_features": [0.7, 0.8, 0.9, 1.0],
 "n_estimators": np.arange(20, 101, 20),
}

Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

Run GridSearch
grid_obj = GridSearchCV(tnd_bagging, grid_para, scoring=scorer, cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

Set classifer to best combination of parameters
tnd_bagging = grid_obj.best_estimator_

Fit best decision tree to training data
tnd_bagging.fit(X_train, Y_train)

BaggingClassifier(max_features=0.7, max_samples=0.7, n_estimators=60,
 random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(tnd_bagging)

Check performance of model on both training and test data sets
perf_tnd_bagging = get_metrics_score(tnd_bagging)
perf_tnd_bagging

 Accuracy Recall Precision F1
Training 0.984806 0.998405 0.979252 0.988736
Test 0.729853 0.883252 0.754266 0.813679

<IPython.core.display.Javascript object>

Observations
• As seen, the model seems to still overfit the training data.
• On the test data set, the tuned model's performance has been slightly improved

compared to the initial bagging model - the F1-score has been increased from 0.77 for
the initial model to 0.81 for the tuned model.

Random Forest Classifier
Use function RandomForestClassifier from sklearn to build model
rndm_frst = RandomForestClassifier(random_state=1)
rndm_frst.fit(X_train, Y_train)

RandomForestClassifier(random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(rndm_frst)

Check performance of model on both training and test data sets
perf_rndm_frst = get_metrics_score(rndm_frst)
perf_rndm_frst

 Accuracy Recall Precision F1
Training 1.000000 1.000000 1.000000 1.00000
Test 0.717949 0.829775 0.766974 0.79714

<IPython.core.display.Javascript object>

Observations
• Compared to the initial decision tree model (not tuned), this model also has slightly

better performance on the test data set.
• However, the metrics all equal 1.00 for the training data set, indicating overfitting. As a

result, there is need for hyperparameter tuning.

Random Forest Classifier with Hyperparameter Tuning
Choose type of classifier
Set oob_score as True to consider out-of-bag samples to estimate
generalization score
tnd_rndm_frst = RandomForestClassifier(oob_score=True, random_state=1)

Form grid of parameters to search in
grid_para = {
 "class_weight": ["balanced", None],
 "max_samples": [0.7, 0.8, 0.9, 1.0],
 "max_depth": np.arange(1, 5, 1),
 "max_features": ["sqrt", "log2"],

 "min_samples_split": [100, 200, 400, 800],
 "n_estimators": np.arange(20, 110, 20),
}

Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

Run GridSearch
grid_obj = GridSearchCV(tnd_rndm_frst, grid_para, scoring=scorer,
cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

Set classifer to best combination of parameters
tnd_rndm_frst = grid_obj.best_estimator_

Fit best decision tree to training data
tnd_rndm_frst.fit(X_train, Y_train)

RandomForestClassifier(max_depth=4, max_features='sqrt',
max_samples=0.8,
 min_samples_split=200, n_estimators=60,
oob_score=True,
 random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(tnd_rndm_frst)

Check performance of model on both training and test data sets
perf_tnd_rndm_frst = get_metrics_score(tnd_rndm_frst)
perf_tnd_rndm_frst

 Accuracy Recall Precision F1
Training 0.730433 0.928649 0.736502 0.821490
Test 0.720173 0.927326 0.728084 0.815715

<IPython.core.display.Javascript object>

Observations
• The performance metrics are very close for the training and test data sets, showing that

the model is not overfitting anymore.
• Compared to the initial random forest model (before tuning), on the test data, precision

has decreased, but recall and F1-score have been increased.

Check importances of various features of tuned random forest
classifier
importances = tnd_rndm_frst.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet",
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()

<IPython.core.display.Javascript object>

Observations
• The top four independent features of importance in the tuned random forest model are

education_of_employee, has_job_experience, unit_of_wage_Year, and
hourly_wage. Compared to the imprtant features in the tuned decision tree, only
continent_Europe has been replaced with hourly_wage.

AdaBoost Classifier
Use function AdaBoostClassifier from sklearn to build model
ada_boost = AdaBoostClassifier(random_state=1)
ada_boost.fit(X_train, Y_train)

AdaBoostClassifier(random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(ada_boost)

Check performance of model on both training and test data sets
perf_ada_boost = get_metrics_score(ada_boost)
perf_ada_boost

 Accuracy Recall Precision F1
Training 0.737441 0.888105 0.759512 0.818790
Test 0.733647 0.885994 0.756734 0.816279

<IPython.core.display.Javascript object>

Observations
• The model seems to already be generalizable, as the performance metrics for the

training and test data sets are very close.

• Yet, a hyperparameter tuning may help to improve the model's performance.

AdaBoost Classifier with Hyperparameter Tuning
Choose type of classifier
tnd_ada_boost = AdaBoostClassifier(random_state=1)

Form grid of parameters to search in
grid_para = {
 "base_estimator": [
 DecisionTreeClassifier(max_depth=1),
 DecisionTreeClassifier(max_depth=2),
 DecisionTreeClassifier(max_depth=3),
],
 "n_estimators": np.arange(20, 110, 20),
 "learning_rate": np.arange(0.2, 1.1, 0.2),
}

Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

Run GridSearch
grid_obj = GridSearchCV(tnd_ada_boost, grid_para, scoring=scorer,
cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

Set classifer to best combination of parameters
tnd_ada_boost = grid_obj.best_estimator_

Fit best decision tree to training data
tnd_ada_boost.fit(X_train, Y_train)

AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=3),
 learning_rate=0.2, n_estimators=20, random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(tnd_ada_boost)

Check performance of model on both training and test data sets
perf_tnd_ada_boost = get_metrics_score(tnd_ada_boost)
perf_tnd_ada_boost

 Accuracy Recall Precision F1
Training 0.752579 0.886259 0.775411 0.827138
Test 0.741889 0.880901 0.767144 0.820097

<IPython.core.display.Javascript object>

Observations
• No significant improvement is observed in the model performance after tuning.

Check importances of various features of tuned AdaBoost classifier
importances = tnd_ada_boost.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet",
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()

<IPython.core.display.Javascript object>

Observations
• The top four independent features of importance in the tuned AdaBoost model are

education_of_employee, has_job_experience, continent_Europe, and
unit_of_wage_Year.

Gradient Boosting Classifier
Use function GradientBoostingClassifier from sklearn to build model
grdnt_boost = GradientBoostingClassifier(random_state=1)
grdnt_boost.fit(X_train, Y_train)

GradientBoostingClassifier(random_state=1)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(grdnt_boost)

Check performance of model on both training and test data sets
perf_grdnt_boost = get_metrics_score(grdnt_boost)
perf_grdnt_boost

 Accuracy Recall Precision F1
Training 0.756448 0.878368 0.783292 0.828110
Test 0.744767 0.875220 0.772743 0.820795

<IPython.core.display.Javascript object>

Observations
• The model already seems to perform well on both the training and test data sets and

does not show overfitting.

• The F1-score for both training and test data sets is above 0.82, which is quite good.

Gradient Boosting Classifier with Hyperparameter Tuning
Choose type of classifier
tnd_grdnt_boost = GradientBoostingClassifier(
 init=AdaBoostClassifier(random_state=1), random_state=1
)

Form grid of parameters to search in
grid_para = {
 "subsample": [0.8, 0.9, 1.0],
 "max_features": [0.8, 0.9, 1.0],
 "n_estimators": np.arange(20, 110, 20),
 "learning_rate": np.arange(0.2, 1.1, 0.2),
}

Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

Run GridSearch
grid_obj = GridSearchCV(tnd_grdnt_boost, grid_para, scoring=scorer,
cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

Set classifer to best combination of parameters
tnd_grdnt_boost = grid_obj.best_estimator_

Fit best decision tree to training data
tnd_grdnt_boost.fit(X_train, Y_train)

GradientBoostingClassifier(init=AdaBoostClassifier(random_state=1),
 learning_rate=0.2, max_features=1.0,
n_estimators=20,
 random_state=1, subsample=0.9)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(tnd_grdnt_boost)

Check performance of model on both training and test data sets
perf_tnd_grdnt_boost = get_metrics_score(tnd_grdnt_boost)
perf_tnd_grdnt_boost

 Accuracy Recall Precision F1
Training 0.750280 0.880467 0.775871 0.824866
Test 0.744636 0.880705 0.769995 0.821637

<IPython.core.display.Javascript object>

Observations
• The hyperparameter tuning barely improves the performance of the gradient boosting

model.

Check importances of various features of tuned gradient boosting
classifier
importances = tnd_grdnt_boost.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet",
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()

<IPython.core.display.Javascript object>

Observations
• The top four independent features of importance in the tuned gradient boosting model

are education_of_employee, has_job_experience, unit_of_wage_Year, and
continent_Europe.

XGBoost Classifier
Use function XGBClassifier from xgboost to build model
xg_boost = XGBClassifier(eval_metric="logloss", random_state=1)
xg_boost.fit(X_train, Y_train)

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
 colsample_bynode=1, colsample_bytree=1,
enable_categorical=False,
 eval_metric='logloss', gamma=0, gpu_id=-1,
importance_type=None,
 interaction_constraints='', learning_rate=0.300000012,
 max_delta_step=0, max_depth=6, min_child_weight=1,
missing=nan,
 monotone_constraints='()', n_estimators=100, n_jobs=8,
 num_parallel_tree=1, predictor='auto', random_state=1,
 reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
subsample=1,
 tree_method='exact', validate_parameters=1,
verbosity=None)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(xg_boost)

Check performance of model on both training and test data sets
perf_xg_boost = get_metrics_score(xg_boost)
perf_xg_boost

 Accuracy Recall Precision F1
Training 0.836230 0.929069 0.842057 0.883426
Test 0.730115 0.854848 0.767499 0.808822

<IPython.core.display.Javascript object>

Observations
• The model is slightly overfitting because its performance is better on the training data

set than on the test data set.
• Hyperparameter tuning could be used to see if further improvement is possible.

XGBoost Classifier with Hyperparameter Tuning
Choose type of classifier
tnd_xg_boost = XGBClassifier(eval_metric="logloss", random_state=1)

Form grid of parameters to search in
grid_para = {
 "subsample": [0.8, 1.0],
 "scale_pos_weight": [1, 2],
 "gamma": [3, 5],
 "colsample_bytree": [0.8, 1.0],
 "colsample_bylevel": [0.8, 1.0],
 "n_estimators": [50, 100],
 "learning_rate": [0.1, 0.2],
}

Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

Run GridSearch
grid_obj = GridSearchCV(tnd_xg_boost, grid_para, scoring=scorer, cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

Set classifer to best combination of parameters
tnd_xg_boost = grid_obj.best_estimator_

Fit best decision tree to training data
tnd_xg_boost.fit(X_train, Y_train)

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=0.8,
 colsample_bynode=1, colsample_bytree=0.8,
 enable_categorical=False, eval_metric='logloss',
gamma=5,
 gpu_id=-1, importance_type=None,
interaction_constraints='',
 learning_rate=0.1, max_delta_step=0, max_depth=6,
 min_child_weight=1, missing=nan,
monotone_constraints='()',
 n_estimators=50, n_jobs=8, num_parallel_tree=1,
predictor='auto',
 random_state=1, reg_alpha=0, reg_lambda=1,
scale_pos_weight=1,
 subsample=0.8, tree_method='exact',
validate_parameters=1,
 verbosity=None)

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(tnd_xg_boost)

Check performance of model on both training and test data sets
perf_tnd_xg_boost = get_metrics_score(tnd_xg_boost)
perf_tnd_xg_boost

 Accuracy Recall Precision F1
Training 0.763568 0.884328 0.787722 0.833234
Test 0.746337 0.873849 0.775017 0.821471

<IPython.core.display.Javascript object>

Observations
• The tuned XGBoost model provides similar performances on both the training and test

data sets.
• The model's performance on the test set was improved slightly via tuning, increasing the

F1-score from 0.81 to 0.82.

Check importances of various features of tuned XGBoost classifier
importances = tnd_xg_boost.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet",
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()

<IPython.core.display.Javascript object>

Observations
• The top four independent features of importance in the tuned XGBoost model are

education_of_employee, unit_of_wage_Year, has_job_experience, and
continent_Europe.

Stacking Classifier
Use function XGBClassifier from sklearn to build model
stacking = StackingClassifier(
 estimators=[
 ("Decision Tree", tnd_dcsn_tree),
 ("Random Forest", tnd_rndm_frst),
 ("AdaBoost", tnd_ada_boost),
 ("Gradient Boosting", tnd_grdnt_boost),
],
 final_estimator=tnd_xg_boost,
)
stacking.fit(X_train, Y_train)

StackingClassifier(estimators=[('Decision Tree',
 DecisionTreeClassifier(max_depth=4,

max_leaf_nodes=14,

min_impurity_decrease=0.0001,

min_samples_split=100,

random_state=1)),
 ('Random Forest',
 RandomForestClassifier(max_depth=4,

max_features='sqrt',

max_samples=0.8,

min_samples_split=200,

n_estimators=60,
 oob_score=True,

random_state=1)),
 ('AdaBoost',
 AdaBoostClass...
 gpu_id=-1,
 importance_type=None,

interaction_constraints='',
 learning_rate=0.1,
 max_delta_step=0,
max_depth=6,
 min_child_weight=1,
 missing=nan,

monotone_constraints='()',

 n_estimators=50,
n_jobs=8,
 num_parallel_tree=1,
 predictor='auto',
 random_state=1,
reg_alpha=0,
 reg_lambda=1,
 scale_pos_weight=1,
 subsample=0.8,
 tree_method='exact',

validate_parameters=1,
 verbosity=None))

<IPython.core.display.Javascript object>

Create confusion matrix based on test data set
make_confusion_matrix(stacking)

Check performance of model on both training and test data sets
perf_stacking = get_metrics_score(stacking)
perf_stacking

 Accuracy Recall Precision F1
Training 0.751962 0.865021 0.785382 0.823280
Test 0.743721 0.863271 0.777523 0.818157

<IPython.core.display.Javascript object>

Observations
• The stacking model has a similar performance to the tuned XGBoost in terms of all

metrics. Specifically, the F1-score is 0.82 for both the training and test data sets.

Comparison of Model Performances
Create a data frame with summary of model performance on training
data set
perf_train = pd.concat(
 [
 perf_dcsn_tree.loc["Training"].T,
 perf_tnd_dcsn_tree.loc["Training"].T,
 perf_bagging.loc["Training"].T,
 perf_tnd_bagging.loc["Training"].T,
 perf_rndm_frst.loc["Training"].T,
 perf_tnd_rndm_frst.loc["Training"].T,
 perf_ada_boost.loc["Training"].T,
 perf_tnd_ada_boost.loc["Training"].T,
 perf_grdnt_boost.loc["Training"].T,
 perf_tnd_grdnt_boost.loc["Training"].T,
 perf_xg_boost.loc["Training"].T,
 perf_tnd_xg_boost.loc["Training"].T,
 perf_stacking.loc["Training"].T,
],
 axis=1,
)

perf_train.columns = [
 "Decision Tree",
 "Tuned Decision Tree",
 "Bagging",
 "Tuned Bagging",
 "Random Forest",
 "Tuned Random Forest",
 "AdaBoost",
 "Tuned AdaBoost",
 "Gradient Boosting",
 "Tuned Gradient Boosting",
 "XGBoost",
 "Tuned XGBoost",
 "Stacking",
]

print("Model Performance Comparison for Training Data Set:")
perf_train

Model Performance Comparison for Training Data Set:

 Decision Tree Tuned Decision Tree Bagging Tuned Bagging
\
Accuracy 1.0 0.737105 0.984077 0.984806

Recall 1.0 0.912784 0.985562 0.998405

Precision 1.0 0.748692 0.990551 0.979252

F1 1.0 0.822635 0.988050 0.988736

 Random Forest Tuned Random Forest AdaBoost Tuned
AdaBoost \
Accuracy 1.0 0.730433 0.737441
0.752579
Recall 1.0 0.928649 0.888105
0.886259
Precision 1.0 0.736502 0.759512
0.775411
F1 1.0 0.821490 0.818790
0.827138

 Gradient Boosting Tuned Gradient Boosting XGBoost \
Accuracy 0.756448 0.750280 0.836230
Recall 0.878368 0.880467 0.929069
Precision 0.783292 0.775871 0.842057
F1 0.828110 0.824866 0.883426

 Tuned XGBoost Stacking
Accuracy 0.763568 0.751962
Recall 0.884328 0.865021
Precision 0.787722 0.785382
F1 0.833234 0.823280

<IPython.core.display.Javascript object>

Observations
• Among the examined classifiers, Decision Tree, Bagging, Tuned Bagging, and Random

Forest are overfitting the training data set.
• The remaining models perform almost similarly in terms of F1-score, except XGBoost

that outperforms others.

Create a data frame with summary of model performance on training
data set
perf_test = pd.concat(
 [
 perf_dcsn_tree.loc["Test"].T,
 perf_tnd_dcsn_tree.loc["Test"].T,

 perf_bagging.loc["Test"].T,
 perf_tnd_bagging.loc["Test"].T,
 perf_rndm_frst.loc["Test"].T,
 perf_tnd_rndm_frst.loc["Test"].T,
 perf_ada_boost.loc["Test"].T,
 perf_tnd_ada_boost.loc["Test"].T,
 perf_grdnt_boost.loc["Test"].T,
 perf_tnd_grdnt_boost.loc["Test"].T,
 perf_xg_boost.loc["Test"].T,
 perf_tnd_xg_boost.loc["Test"].T,
 perf_stacking.loc["Test"].T,
],
 axis=1,
)

perf_test.columns = [
 "Decision Tree",
 "Tuned Decision Tree",
 "Bagging",
 "Tuned Bagging",
 "Random Forest",
 "Tuned Random Forest",
 "AdaBoost",
 "Tuned AdaBoost",
 "Gradient Boosting",
 "Tuned Gradient Boosting",
 "XGBoost",
 "Tuned XGBoost",
 "Stacking",
]

print("Model Performance Comparison for Test Data Set:")
perf_test

Model Performance Comparison for Test Data Set:

 Decision Tree Tuned Decision Tree Bagging Tuned Bagging
\
Accuracy 0.652669 0.729853 0.690345 0.729853

Recall 0.736729 0.911851 0.770813 0.883252

Precision 0.741522 0.742424 0.766758 0.754266

F1 0.739118 0.818462 0.768780 0.813679

 Random Forest Tuned Random Forest AdaBoost Tuned
AdaBoost \
Accuracy 0.717949 0.720173 0.733647

0.741889
Recall 0.829775 0.927326 0.885994
0.880901
Precision 0.766974 0.728084 0.756734
0.767144
F1 0.797140 0.815715 0.816279
0.820097

 Gradient Boosting Tuned Gradient Boosting XGBoost \
Accuracy 0.744767 0.744636 0.730115
Recall 0.875220 0.880705 0.854848
Precision 0.772743 0.769995 0.767499
F1 0.820795 0.821637 0.808822

 Tuned XGBoost Stacking
Accuracy 0.746337 0.743721
Recall 0.873849 0.863271
Precision 0.775017 0.777523
F1 0.821471 0.818157

<IPython.core.display.Javascript object>

Observations
• Tuned Gradient Boosting model slightly outperforms all other models in terms of F1-

score.
• However, Tuned Decision Tree, Tuned Bagging, Tuned Random Forest, AdaBoost, Tuned

AdaBoost, Gradient Boosting, Tuned Gradient Boosting, XGBoost, Tuned XGBoost, and
Stacking all provide close F1-scores (0.81-0.82).

Selection of Final Model
• Considering the model performance, its interpretability, and its simplicity altogether, the

tuned decision tree is selected as the final model.

Final Model
Visualization
Plot tuned tree
plt.figure(figsize=(35, 10))

plot_tree(
 decision_tree=tnd_dcsn_tree,
 feature_names=col_names,
 filled=True,
 fontsize=10,
 node_ids=True,
 class_names=True,
)

[Text(0.4375, 0.9, 'node #0\neducation_of_employee <= 1.5\ngini =
0.444\nsamples = 17836\nvalue = [5923, 11913]\nclass = y[1]'),
 Text(0.20833333333333334, 0.7, 'node #1\ncontinent_Asia <= 0.5\ngini
= 0.446\nsamples = 2418\nvalue = [1607, 811]\nclass = y[0]'),
 Text(0.125, 0.5, 'node #13\ncontinent_Europe <= 0.5\ngini = 0.492\
nsamples = 793\nvalue = [448, 345]\nclass = y[0]'),
 Text(0.08333333333333333, 0.3, 'node #17\nhas_job_experience <= 0.5\
ngini = 0.5\nsamples = 442\nvalue = [217, 225]\nclass = y[1]'),
 Text(0.041666666666666664, 0.1, 'node #19\ngini = 0.458\nsamples =
180\nvalue = [116, 64]\nclass = y[0]'),
 Text(0.125, 0.1, 'node #20\ngini = 0.474\nsamples = 262\nvalue =
[101, 161]\nclass = y[1]'),
 Text(0.16666666666666666, 0.3, 'node #18\ngini = 0.45\nsamples = 351\
nvalue = [231, 120]\nclass = y[0]'),
 Text(0.2916666666666667, 0.5, 'node #14\nregion_of_employment_West <=
0.5\ngini = 0.409\nsamples = 1625\nvalue = [1159, 466]\nclass =
y[0]'),
 Text(0.25, 0.3, 'node #23\nregion_of_employment_Northeast <= 0.5\
ngini = 0.429\nsamples = 1302\nvalue = [897, 405]\nclass = y[0]'),
 Text(0.20833333333333334, 0.1, 'node #25\ngini = 0.454\nsamples =
874\nvalue = [570, 304]\nclass = y[0]'),
 Text(0.2916666666666667, 0.1, 'node #26\ngini = 0.361\nsamples = 428\
nvalue = [327, 101]\nclass = y[0]'),
 Text(0.3333333333333333, 0.3, 'node #24\ngini = 0.306\nsamples = 323\
nvalue = [262, 61]\nclass = y[0]'),
 Text(0.6666666666666666, 0.7, 'node #2\nhas_job_experience <= 0.5\
ngini = 0.403\nsamples = 15418\nvalue = [4316, 11102]\nclass = y[1]'),
 Text(0.5, 0.5, 'node #3\nunit_of_wage_Year <= 0.5\ngini = 0.48\
nsamples = 6480\nvalue = [2597, 3883]\nclass = y[1]'),
 Text(0.4166666666666667, 0.3, 'node #7\neducation_of_employee <= 3.5\
ngini = 0.44\nsamples = 868\nvalue = [584, 284]\nclass = y[0]'),
 Text(0.375, 0.1, 'node #21\ngini = 0.427\nsamples = 816\nvalue =
[564, 252]\nclass = y[0]'),
 Text(0.4583333333333333, 0.1, 'node #22\ngini = 0.473\nsamples = 52\
nvalue = [20, 32]\nclass = y[1]'),
 Text(0.5833333333333334, 0.3, 'node #8\ncontinent_Europe <= 0.5\ngini
= 0.46\nsamples = 5612\nvalue = [2013, 3599]\nclass = y[1]'),
 Text(0.5416666666666666, 0.1, 'node #9\ngini = 0.48\nsamples = 4731\
nvalue = [1887, 2844]\nclass = y[1]'),
 Text(0.625, 0.1, 'node #10\ngini = 0.245\nsamples = 881\nvalue =
[126, 755]\nclass = y[1]'),
 Text(0.8333333333333334, 0.5, 'node #4\neducation_of_employee <= 2.5\
ngini = 0.311\nsamples = 8938\nvalue = [1719, 7219]\nclass = y[1]'),
 Text(0.75, 0.3, 'node #5\nunit_of_wage_Year <= 0.5\ngini = 0.421\
nsamples = 4080\nvalue = [1227, 2853]\nclass = y[1]'),
 Text(0.7083333333333334, 0.1, 'node #11\ngini = 0.481\nsamples = 340\
nvalue = [203, 137]\nclass = y[0]'),
 Text(0.7916666666666666, 0.1, 'node #12\ngini = 0.398\nsamples =
3740\nvalue = [1024, 2716]\nclass = y[1]'),
 Text(0.9166666666666666, 0.3, 'node #6\nunit_of_wage_Year <= 0.5\

ngini = 0.182\nsamples = 4858\nvalue = [492, 4366]\nclass = y[1]'),
 Text(0.875, 0.1, 'node #15\ngini = 0.385\nsamples = 257\nvalue = [67,
190]\nclass = y[1]'),
 Text(0.9583333333333334, 0.1, 'node #16\ngini = 0.168\nsamples =
4601\nvalue = [425, 4176]\nclass = y[1]')]

<IPython.core.display.Javascript object>

Important Features
Check importances of various features of tuned tree
importances = tnd_dcsn_tree.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet",
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()

<IPython.core.display.Javascript object>

Insights and Recommendations
Insights

• According to the EDA:
– The majority (66%) of work via applications are from Asia.

– A large portion (78%) of the applicants have a bachelor's or a master's degree
and only less than 9% have a doctrate degree.

– Most (58%) of the applicants have job experience.
– The vast majority of offerred jobs (88%) do not require training.
– The majority (>81%) of the offered jobs are for Northeast, South, and West

regions of the US.
– The majority (89%) of the offered positions are full-time.
– Merely about 10% of the positions have a wage unit other than Year.
– About 2/3 of the work visa applications are certified.
– The European and South American applicants have the highest and the lowest

chances of visa certification, respectively.
– The higher the applicant's education level is, the more their chances of visa

certification are.
– Having job experience increases the chances of visa certification.
– Job training requirement has a negligible effect on visa certification likelihood.
– The visa applications for the employment in the Midwest region are more likely to

be certified than the applications for the employment in other regions.
– Being a full- or part-time position does not observably affect the visa certification

likelihood.
– The offered positions with the wage units of Year and Hour have the highest and

the lowest chances of visa certification, respectively.
– The employer's number of employees has an insignificant impact on the chances

of visa certification for its potential foreign employees.
– The majority of employers applying for work visas are less than 40 years old.
– The majority of the applications are for the jobs with an equivalent hourly wage of

less than 100 (probably in dollars).
– The positions with certified visa applications are on average of lower equivalent

hourly wages than the positions with denied visa applications.
– The age of an employer has negligible effect on the likelihood of visa certification.

• According to the fitted classifiers:
– Almost all the classifiers perform similarly, but the Tuned Gradient Boosting

model slightly outperforms other models in terms of F1-score - it provided the
maximum F1-score of 0.822 on the test data.

– Overall, the features education_of_employee, has_job_experience, and
unit_of_wage_Year are among the top four important variables affecting the
visa certification likelihood. Other variables of importance are
continent_Europe and hourly_wage.

– According to the final selected model, i.e., Tuned Decision Tree:
• The top four variables of importance when predicting a visa certification

are education_of_employee, has_job_experience,
unit_of_wage_Year, and continent_Europe.

• The applicants meeting the following criteria have high chances of visa
certification:

– Having a master's or a doctorate degree
(education_of_employee > 2.5); having job experience

(has_job_experience > 0.5); and applying for a position with a
prevailing wage unit of year (unit_of_wage_Year > 0.5)

– Having a university degree (education_of_employee > 1.5);
having no job experience (has_job_experience <= 0.5);
applying for a position with a prevailing wage unit of year
(unit_of_wage_Year > 0.5); and being from Europe
(continent_Europe > 0.5)

– Having a bachelor's degree (1.5 < education_of_employee <=
2.5); having job experience (has_job_experience > 0.5); and
applying for a position with a prevailing wage unit of year
(unit_of_wage_Year > 0.5)

• The applicants meeting the following criteria have high chances of visa
denial:

– Having a bachelor's or a master's degree (1.5 <
education_of_employee <= 3.5); having no job experience
(has_job_experience <= 0.5); and applying for a position with
a prevailing wage unit other than year (unit_of_wage_Year <=
0.5)

– Having no university degree (education_of_employee <= 1.5);
being from Asia (continent_Asia > 0.5); and being employed in
the West region (region_of_employment_West > 0.5)

– Having no university degree (education_of_employee <= 1.5);
being from Asia (continent_Asia > 0.5); and being employed in
the Northeast region (region_of_employment_Northeast >
0.5)

Recommendations
• Considering its relative simplicity and interpretability, the Tuned Decision Tree model is

recommended to OFLC as the final classifier. If an ensemble model is preferred for
reducing the bias, the Tuned Gradient Boosting model is recommended.

• Given the above insights, OFLC shall particularly consider the applicants' level of
education, their job experience, and their prevailing wage unit in its visa certification
probability estimations. The applicants who have a higher education, have job
experience, and their US employment's wage unit is year are more likely to be eventually
certified for a work visa. Being from Europe also increases the chances of visa
certification in certain cases.

• In order to avoid workforce shortage in the US, especially in high-demand industries that
depend on foreign employees, it is recommended that OFLC prioritizes the processing of
the visa applications that have higher chances of certification based on the developed
classification models.

• To minimize the waste of OFLC's resources, it could quickly deny the applications that
have very high chances of denial based on the prediction models - such applications
could be reprocessed by a different section if appealed by the applicants/employers.

• It is recommended that some other potentially important variables are also considered in
the classification model development - examples are the industry of employment (e.g.,
medical, engineering, finance, agriculture, etc.), the applicant's amount of experience

(e.g., in years), the agreement of the applicant's qualifications with the job, and the
employer's socioeconomic benefits to the US.

• More sophisticated ML-based classification models are also recommended to be tried for
this purpose.

	Context:
	Data Description
	Importing Necessary Libraries

	Importing and Checking Data
	Observations
	Observations
	Observations
	Observations

	Exploratory Data Analysis (EDA)
	a) Univariate Analysis
	User-Defined Functions for Univariate Plots
	Continent of Origin
	Observations

	Education Level
	Observations

	Job Experience
	Observations

	Job Training Requirement
	Observations

	Employer Region
	Observations

	Position Type
	Observations

	Wage Unit
	Observations

	Case Status
	Observations

	Number of Employees
	Observations

	b) Bivariate Analysis
	User-Defined Functions for Bivariate Plots
	Case Status vs. Continent of Origin
	Observations

	Case Status vs. Education Level
	Observations

	Case Status vs. Job Experience
	Observations

	Case Status vs. Job Training Requirement
	Observations

	Case Status vs. Employer Region
	Observations

	Case Status vs. Position Type
	Observations

	Case Status vs. Wage Unit
	Observations

	Case Status vs. Number of Employees
	Observations

	Training Requirement vs. Job Experience
	Observations

	Job Training Requirement vs. Continent
	Observations

	Data Preprocessing
	a) Treatment of Missing Values
	b) Feature Engineering
	Observations

	c) Detection and Treatment of Outliers
	Detection of Outliers
	Observations

	Treatment of Outliers
	Secondary EDA
	Univariate Analysis
	Years Since Establishment
	Observations

	Hourly Wage
	Observations

	Bivariate Analysis
	Linear Correlation Coefficients
	Observations

	Pairplot
	Observations

	Case Status vs. Hourly Wage
	Observations

	Hourly Wage vs. Education Level
	Observations

	Hourly Wage vs. Job Experience
	Observations

	Hourly Wage vs. Job Training
	Observations

	Case Status vs. Years Since Establishment
	Observations

	Number of Employees vs. Years Since Establishment
	Observations

	Data Preparation for Modeling
	a) Encoding Categorical Data
	Separation of Dependent and Independent Variables

	b) Creating Dummy Variables
	c) Splitting Data into Training and Test Sets
	Building Prediction Models
	a) Evaluation Criterion
	Possible Errors
	More Important Error
	Optimal Performance Measure
	User-Defined Functions for Model Performance Evaluation

	Decision Tree Classifier
	Observations
	Decision Tree Classifier with Hyperparameter Tuning
	Observations
	Observations

	Bagging Classifier
	Observations
	Bagging Classifier with Hyperparameter Tuning
	Observations

	Random Forest Classifier
	Observations
	Random Forest Classifier with Hyperparameter Tuning
	Observations
	Observations

	AdaBoost Classifier
	Observations
	AdaBoost Classifier with Hyperparameter Tuning
	Observations
	Observations

	Gradient Boosting Classifier
	Observations
	Gradient Boosting Classifier with Hyperparameter Tuning
	Observations
	Observations

	XGBoost Classifier
	Observations
	XGBoost Classifier with Hyperparameter Tuning
	Observations
	Observations

	Stacking Classifier
	Observations

	Comparison of Model Performances
	Observations
	Observations
	Selection of Final Model

	Final Model
	Visualization

	Important Features
	Insights and Recommendations
	Insights
	Recommendations

