
EasyVisa Project

Context:
Business communities in the United States are facing high demand for human resources, but 
one of the constant challenges is identifying and attracting the right talent, which is perhaps the 
most important element in remaining competitive. Companies in the United States look for 
hard-working, talented, and qualified individuals both locally as well as abroad.

The Immigration and Nationality Act (INA) of the US permits foreign workers to come to the 
United States to work on either a temporary or permanent basis. The act also protects US 
workers against adverse impacts on their wages or working conditions by ensuring US 
employers' compliance with statutory requirements when they hire foreign workers to fill 
workforce shortages. The immigration programs are administered by the Office of Foreign 
Labor Certification (OFLC).

OFLC processes job certification applications for employers seeking to bring foreign workers 
into the United States and grants certifications in those cases where employers can demonstrate
that there are not sufficient US workers available to perform the work at wages that meet or 
exceed the wage paid for the occupation in the area of intended employment.

In FY 2016, the OFLC processed 775,979 employer applications for 1,699,957 positions for 
temporary and permanent labor certifications. This was a nine percent increase in the overall 
number of processed applications from the previous year. The process of reviewing every case is
becoming a tedious task as the number of applicants is increasing every year.

The increasing number of applicants every year calls for a Machine Learning based solution that 
can help in shortlisting the candidates having higher chances of VISA approval. OFLC has hired 
your firm EasyVisa for data-driven solutions. You as a data scientist have to analyze the data 
provided and, with the help of a classification model:

• Facilitate the process of visa approvals.
• Recommend a suitable profile for the applicants for whom the visa should be certified or 

denied based on the drivers that significantly influence the case status.

Data Description
The data contains the different attributes of the employee and the employer. The detailed data 
dictionary is given below.

• case_id: ID of each visa application
• continent: Information of continent the employee
• education_of_employee: Information of education of the employee
• has_job_experience: Does the employee has any job experience? Y= Yes; N = No
• requires_job_training: Does the employee require any job training? Y = Yes; N = No
• no_of_employees: Number of employees in the employer's company



• yr_of_estab: Year in which the employer's company was established
• region_of_employment: Information of foreign worker's intended region of employment 

in the US.
• prevailing_wage: Average wage paid to similarly employed workers in a specific 

occupation in the area of intended employment. The purpose of the prevailing wage is to 
ensure that the foreign worker is not underpaid compared to other workers offering the 
same or similar service in the same area of employment.

• unit_of_wage: Unit of prevailing wage. Values include Hourly, Weekly, Monthly, and 
Yearly.

• full_time_position: Is the position of work full-time? Y = Full Time Position; N = Part Time
Position

• case_status: Flag indicating if the Visa was certified or denied

Importing Necessary Libraries
# This command will make Python code more structured
%load_ext nb_black

# Make warnings not displayed
import warnings

warnings.filterwarnings("ignore")
from statsmodels.tools.sm_exceptions import ConvergenceWarning

warnings.simplefilter("ignore", ConvergenceWarning)

# Libraries for reading and manipulating data
import pandas as pd
import numpy as np

# Library for splitting data
from sklearn.model_selection import train_test_split

# Libaries for data visualization
import matplotlib.pyplot as plt
import seaborn as sns

# Set limits on number of displayed columns and rows
pd.set_option("display.max_columns", None)  # no maximum limit
pd.set_option("display.max_rows", 200)  # maximum of 200 rows

# Library for building and showing decision tree models
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot_tree

# Library for Bagging ensemble technique
from sklearn.ensemble import BaggingClassifier

# Library for Random Forest ensemble technique
from sklearn.ensemble import RandomForestClassifier



# Library for AdaBoost ensemble technique
from sklearn.ensemble import AdaBoostClassifier

# Library for Gradient Boosting ensemble technique
from sklearn.ensemble import GradientBoostingClassifier

# Library for XGBoost ensemble technique
from xgboost import XGBClassifier

# Library for Stacking ensemble technique
from sklearn.ensemble import StackingClassifier

# To tune different models
from sklearn.model_selection import GridSearchCV

# Libraries for calculating different metric scores
from sklearn.metrics import (
    f1_score,
    accuracy_score,
    recall_score,
    precision_score,
    make_scorer,
    confusion_matrix,
)
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Importing and Checking Data
# Read data and create a data frame
df_orig = pd.read_csv("EasyVisa.csv")  # original data frame

# Create a copy of original data frame for further steps
df_0 = df_orig.copy()
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# Print size of data frame
print(
    f"There are {df_0.shape[0]} rows and {df_0.shape[1]} columns in 
the original data frame."
)

There are 25480 rows and 12 columns in the original data frame.
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# Show sample rows of original data
df_0.sample(10, random_state=1)

         case_id      continent education_of_employee 
has_job_experience  \
17639  EZYV17640           Asia            Bachelor's                 
Y   
23951  EZYV23952        Oceania            Bachelor's                 
N   
8625    EZYV8626           Asia              Master's                 
N   
20206  EZYV20207           Asia            Bachelor's                 
Y   
7471    EZYV7472         Europe            Bachelor's                 
Y   
3433    EZYV3434           Asia            Bachelor's                 
Y   
24440  EZYV24441         Europe           High School                 
N   
12104  EZYV12105           Asia              Master's                 
Y   
15656  EZYV15657           Asia            Bachelor's                 
N   
23110  EZYV23111  North America            Bachelor's                 
Y   

      requires_job_training  no_of_employees  yr_of_estab  \
17639                     N              567         1992   
23951                     N              619         1938   
8625                      N             2635         2005   
20206                     Y             3184         1986   
7471                      N             4681         1928   
3433                      N              222         1989   
24440                     Y             3278         1994   
12104                     N             1359         1997   
15656                     N             2081         2003   
23110                     N              854         1998   

      region_of_employment  prevailing_wage unit_of_wage 
full_time_position  \
17639              Midwest       26842.9100         Year              
Y   
23951              Midwest       66419.9800         Year              
Y   
8625                 South         887.2921         Hour              
Y   
20206            Northeast       49435.8000         Year              
Y   
7471                  West       49865.1900         Year              
Y   



3433                 South         813.7261         Hour              
Y   
24440                South      204948.3900         Year              
Y   
12104                 West      202237.0400         Year              
N   
15656                 West      111713.0200         Year              
Y   
23110            Northeast         444.8257         Hour              
Y   

      case_status  
17639   Certified  
23951   Certified  
8625    Certified  
20206   Certified  
7471       Denied  
3433    Certified  
24440      Denied  
12104   Certified  
15656      Denied  
23110      Denied  
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Observations
• The column names all seem fine and do not need modification.
• The column case_id could be removed, as it does not contain any data usable in the 

prediction models.
• The values in the columns has_job_experience, requires_job_training, and 

full_time_poistion are Y or N, so they could be encoded as 1 and 0, respectively.
• The education levels stored in the column education_of_employee could be replaced

with ordinal integer values.
• The variable yr_of_estab is hard to interpret, so it could be transformed into years 

since establishment.
• The unit of prevaliling_wage is not constant, so it would make this parameter more 

interpretable if its unit is made constant. This will reduce the number of independent 
variables as unit_of_wage will be removed.

# Check for duplicate rows
dplct_no = df_0.duplicated().sum()
print(f"There are {dplct_no} duplicate rows in the data.")

There are 0 duplicate rows in the data.

<IPython.core.display.Javascript object>



# Check types of data columns and number of non-null values in each 
column
df_0.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 25480 entries, 0 to 25479

Data columns (total 12 columns):

 #   Column                 Non-Null Count  Dtype  

---  ------                 --------------  -----  

 0   case_id                25480 non-null  object 

 1   continent              25480 non-null  object 

 2   education_of_employee  25480 non-null  object 

 3   has_job_experience     25480 non-null  object 

 4   requires_job_training  25480 non-null  object 

 5   no_of_employees        25480 non-null  int64  

 6   yr_of_estab            25480 non-null  int64  

 7   region_of_employment   25480 non-null  object 

 8   prevailing_wage        25480 non-null  float64

 9   unit_of_wage           25480 non-null  object 

 10  full_time_position     25480 non-null  object 

 11  case_status            25480 non-null  object 

dtypes: float64(1), int64(2), object(9)

memory usage: 2.3+ MB
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Observations
• Considering that the total of rows is 25480, none of the columns have null/missing 

values.
• Among the 11 columns of data (excluding case_id), 3 are of numeric type and the 

remaining 8 are of non-numeric type.
– Numeric:

• Integer: no_of_employees and yr_of_estab



• Float: prevailing_wage
– Non-numeric:

• Object: continent, education_of_employee, 
has_job_experience, requires_job_training, 
region_of_employment, unit_of_wage, full_time_position, 
and case_status

# Check statistical summary of numeric data
df_0.describe().T

                   count          mean           std        min       
25%  \
no_of_employees  25480.0   5667.043210  22877.928848   -26.0000   
1022.00   
yr_of_estab      25480.0   1979.409929     42.366929  1800.0000   
1976.00   
prevailing_wage  25480.0  74455.814592  52815.942327     2.1367  
34015.48   

                      50%          75%        max  
no_of_employees   2109.00    3504.0000  602069.00  
yr_of_estab       1997.00    2005.0000    2016.00  
prevailing_wage  70308.21  107735.5125  319210.27  
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Observations
• The mean and median values of no_of_employees are 5667 and 2109, respectively, 

implying a right-skewed distribution.
• The maximum value of no_of_employees is above 600000, which is quite high but 

possible.
• The minimum value of no_of_employees is -26, i.e., negative, which is unreasonable. 

The negative values should be treated as missing values.
• The oldest and newest employers have been established since (yr_of_estab =) 1800 

and 2016, respectively.
• The distribution of prevailing_wage is difficult to interpret at this point, because its 

unit varies across the rows. However, the minimum value is above zero, which is 
reasonable.

# Check statistical summary of non-numeric data
df_0.describe(include=["object"]).T

                       count unique         top   freq
case_id                25480  25480      EZYV01      1
continent              25480      6        Asia  16861
education_of_employee  25480      4  Bachelor's  10234
has_job_experience     25480      2           Y  14802
requires_job_training  25480      2           N  22525
region_of_employment   25480      5   Northeast   7195
unit_of_wage           25480      4        Year  22962



full_time_position     25480      2           Y  22773
case_status            25480      2   Certified  17018
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# Identify unique values of categorical data columns
cat_cols = df_0.select_dtypes(include="object").columns  # columns of 
object data type

for col in cat_cols:
    print("Unique values in the column", col, "are:")
    print(df_0[col].value_counts())
    print("=" * 60)

Unique values in the column case_id are:

EZYV01       1

EZYV16995    1

EZYV16993    1

EZYV16992    1

EZYV16991    1

            ..

EZYV8492     1

EZYV8491     1

EZYV8490     1

EZYV8489     1

EZYV25480    1

Name: case_id, Length: 25480, dtype: int64

============================================================

Unique values in the column continent are:

Asia             16861

Europe            3732

North America     3292

South America      852



Africa             551

Oceania            192

Name: continent, dtype: int64

============================================================

Unique values in the column education_of_employee are:

Bachelor's     10234

Master's        9634

High School     3420

Doctorate       2192

Name: education_of_employee, dtype: int64

============================================================

Unique values in the column has_job_experience are:

Y    14802

N    10678

Name: has_job_experience, dtype: int64

============================================================

Unique values in the column requires_job_training are:

N    22525

Y     2955

Name: requires_job_training, dtype: int64

============================================================

Unique values in the column region_of_employment are:

Northeast    7195

South        7017

West         6586

Midwest      4307



Island        375

Name: region_of_employment, dtype: int64

============================================================

Unique values in the column unit_of_wage are:

Year     22962

Hour      2157

Week       272

Month       89

Name: unit_of_wage, dtype: int64

============================================================

Unique values in the column full_time_position are:

Y    22773

N     2707

Name: full_time_position, dtype: int64

============================================================

Unique values in the column case_status are:

Certified    17018

Denied        8462

Name: case_status, dtype: int64

============================================================
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Observations
• The majority of employees are from Asia.
• The majority of employees have a Bachelor's degree.
• Most of the employees have job experience.
• The vast majority of the jobs do not require training.
• The regions Northeast, South, and West need most of the employees.
• The available units for wage are Year, Hour, Week, and Month. The majority of the wage 

values in the data are per year.



• The vast majority of the applications are for full-time positions.
• Near 2/3 of the visa applications are certified.

# Drop case_id column before EDA, as it has no meaning for analyses 
and modeling
df_0.drop("case_id", axis=1, inplace=True)
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Exploratory Data Analysis (EDA)

a) Univariate Analysis
User-Defined Functions for Univariate Plots
# User-defined function to plot a boxplot and a histogram along the 
same scale
def histogram_boxplot(
    data, feature, xlabel, ylabel, figsize=(8, 6), kde=False, 
bins=None
):
    """
    Boxplot and histogram combined

    data: dataframe
    feature: dataframe column
    xlabel: label of x-axis
    ylabel: label of y-axis
    figsize: size of figure (default (8, 6))
    kde: whether to show the density curve (default False)
    bins: number of bins for histogram (default None)
    """
    f2, (ax_box2, ax_hist2) = plt.subplots(
        nrows=2,  # Number of rows of the subplot grid= 2
        sharex=True,  # x-axis will be shared among all subplots
        gridspec_kw={"height_ratios": (0.25, 0.75)},
        figsize=figsize,
    )  # creating the 2 subplots

    sns.boxplot(
        data=data, x=feature, ax=ax_box2, showmeans=True, 
color="orange"
    )  # boxplot will be created and a star will indicate the mean 
value of the column

    sns.histplot(
        data=data, x=feature, kde=kde, ax=ax_hist2, bins=bins, 



palette="Set2"
    ) if bins else sns.histplot(
        data=data, x=feature, kde=kde, ax=ax_hist2
    )  # For histogram

    ax_hist2.axvline(
        data[feature].mean(), color="green", linestyle="--"
    )  # Add mean to the histogram

    ax_hist2.axvline(
        data[feature].median(), color="red", linestyle="-"
    )  # Add median to the histogram

    ax_box2.set_xlabel("", fontsize=16)  # remove label of 1st x-axis
    ax_hist2.set_xlabel(xlabel, fontsize=16)  # set 2nd x-axis label
    ax_hist2.set_ylabel(ylabel, fontsize=16)
    # set y-axis label
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# User-defined function to create labeled barplots
def labeled_barplot(data, feature, xlabel, ylabel, perc=False, 
n=None):
    """
    Barplot with percentage to the left

    data: dataframe
    feature: dataframe column
    xlabel: label of x-axis
    ylabel: label of y-axis
    perc: whether to display percentages instead of count (default is 
False)
    n: displays the top n category levels (default is None, i.e., 
display all levels)
    """

    total = len(data[feature])  # length of the column
    count = data[feature].nunique()
    if n is None:
        plt.figure(figsize=(8, 0.5 * count + 1))
    else:
        plt.figure(figsize=(8, 0.5 * n + 1))

    plt.yticks(fontsize=14)
    plt.xticks(fontsize=14)

    ax = sns.countplot(
        data=data,
        y=feature,
        palette="Set2",



        order=data[feature].value_counts().index[:n].sort_values(),
    )

    for p in ax.patches:
        if perc == True:
            label = "{:.1f}%".format(
                100 * p.get_width() / total
            )  # percentage of each class of the category
        else:
            label = p.get_width()  # count of each level of the 
category

        y = p.get_y() + p.get_height() / 2
        x = p.get_width()

        ax.annotate(
            label,
            (x, y),
            ha="left",
            va="center",
            size=12,
            xytext=(0, 0),
            textcoords="offset points",
        )  # annotate the percentage

    ax.set_xlabel(xlabel, fontsize=16)  # set x-axis label
    ax.set_ylabel(ylabel, fontsize=16)  # set y-axis label

    plt.show()  # show the plot
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Continent of Origin
# Use user-defined function labeled_barplot() to examine distribution 
of data
labeled_barplot(
    data=df_0,
    feature="continent",
    xlabel="Number of Applications",
    ylabel="Continent of Origin",
    perc=True,
)
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Observations
• The majority (66%) of the visa applicants are from Asia, which makes sense given the 

high population of this continent.
• The lowest fraction (<1%) of the applicants are from Oceania, which also makes sense 

given its very low population.
• North America and Europe have close number of applicants (12.9% and 14.6%).

Education Level
# Use user-defined function labeled_barplot() to examine distribution 
of data
labeled_barplot(
    data=df_0,
    feature="education_of_employee",
    xlabel="Number of Applications",
    ylabel="Education Level",
    perc=True,
)
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Observations
• The majority of the applicants have either bachelor's degrees (40.2%) or master's 

degrees (37.8%).
• Only 8.6% of the applicants have doctorate degrees.

Job Experience
# Use user-defined function labeled_barplot() to examine distribution 
of data
labeled_barplot(
    data=df_0,
    feature="has_job_experience",
    xlabel="Number of Applications",
    ylabel="Job Experience",
    perc=True,
)
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Observations
• More than half (58%) of the applicants have job experience.

Job Training Requirement
# Use user-defined function labeled_barplot() to examine distribution 
of data
labeled_barplot(
    data=df_0,
    feature="requires_job_training",
    xlabel="Number of Applications",
    ylabel="Training Requirement",
    perc=True,
)
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Observations
• The vast majority (>88%) of the jobs do not require the applicants to receive training.

Employer Region
# Use user-defined function labeled_barplot() to examine distribution 
of data
labeled_barplot(
    data=df_0,
    feature="region_of_employment",
    xlabel="Number of Applications",
    ylabel="Employer Region",
    perc=True,
)
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Observations
• Most of the applications are for employment in the Northeast, South, and West regions 

of the United States. This could be expected because the majority of the tech companies 
are in those regions and the populations of those regions are higher than the other 
regions of the United States.

• The Island region has the lowest number (1.5%) of work visa applicants.

Position Type
# Use user-defined function labeled_barplot() to examine distribution 
of data
labeled_barplot(
    data=df_0,
    feature="full_time_position",
    xlabel="Number of Applications",
    ylabel="Full-Time Position",
    perc=True,
)
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Observations
• More than 89% of the applications are related to full-time employment.

Wage Unit
# Use user-defined function labeled_barplot() to examine distribution 
of data
labeled_barplot(
    data=df_0,
    feature="unit_of_wage",
    xlabel="Number of Applications",
    ylabel="Wage Unit",
    perc=True,
)
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Observations
• The dominant majority (90%) of the applications are for the jobs whose prevailing wages

are computed per year.

Case Status
# Use user-defined function labeled_barplot() to examine distribution 
of data
labeled_barplot(
    data=df_0,
    feature="case_status",
    xlabel="Number of Applications",
    ylabel="Case Status",
    perc=True,
)
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Observations
• Almost two-thirds of the visa applications are certified.

Number of Employees
# Use user-defined function histogram_boxplot() to examine 
distribution of data
histogram_boxplot(
    data=df_0,
    feature="no_of_employees",
    xlabel="Number of Employees",
    ylabel="Number of Applications",
    kde=True,
    bins=60,
)
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Observations
• There is a large variation in the number of employees of the employers.
• The distribution is highly right-skewed.
• Not all the detected outliers per 1.5-IQR rule shall be treated as outliers, because, in 

2016, there existed employers in the United States that actually had hundreds of 
thousands of employees. Here, per the shown distribution, a cut-off value of 450000 is 
considered for the number of employees.

b) Bivariate Analysis
Since the ultimate goal of this project is producing models to predict employment visa 
certification, the focus of the bivariate analyses will be on the effects of different independent 
variables on the target variable, i.e., case_status.

User-Defined Functions for Bivariate Plots
# User-defined function to plot a stacked barplot
def stacked_barplot(data, predictor, target, xlabel, ylabel):



    """
    Print the category counts and plot a stacked bar chart

    data: dataframe
    predictor: independent variable
    target: target variable
    xlabel: label of x-axis
    ylabel: label of y-axis
    """

    count = data[predictor].nunique()
    sorter = data[target].value_counts().index[-1]
    tab1 = pd.crosstab(data[predictor], data[target], 
margins=True).sort_values(
        by=sorter, ascending=False
    )
    print(tab1)
    print("-" * 120)
    tab = pd.crosstab(data[predictor], data[target], 
normalize="index").sort_values(
        by=sorter, ascending=False
    )
    tab.plot(kind="bar", stacked=True, figsize=(count + 2, 4))

    plt.legend(loc="upper left", bbox_to_anchor=(1, 1), fontsize=16)
    plt.xlabel(xlabel, fontsize=16)
    plt.ylabel(ylabel, fontsize=16)

    plt.xticks(fontsize=14)
    plt.yticks(fontsize=14)

    plt.show()
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# User-defined function to plot distributions w.r.t. target
def distribution_plot_wrt_target(data, predictor, target, plabel, 
tlabel):
    """
    Print the category counts and plot a stacked bar chart

    data: dataframe
    predictor: independent variable
    target: target variable
    plabel: label of predictor axes
    tlabel: label of target axes
    """

    fig, axs = plt.subplots(2, 2, figsize=(12, 10))



    target_uniq = data[target].unique()

    sns.histplot(
        data=data[data[target] == target_uniq[0]],
        x=predictor,
        kde=True,
        ax=axs[0, 0],
        color="teal",
        stat="density",
    )
    axs[0, 0].set_title("Distribution of predictor for target = " + 
str(target_uniq[0]))
    axs[0, 0].set_xlabel(plabel, fontsize=16)
    axs[0, 0].set_ylabel("Density", fontsize=16)

    sns.histplot(
        data=data[data[target] == target_uniq[1]],
        x=predictor,
        kde=True,
        ax=axs[0, 1],
        color="orange",
        stat="density",
    )
    axs[0, 1].set_title("Distribution of predictor for target = " + 
str(target_uniq[1]))
    axs[0, 1].set_xlabel(plabel, fontsize=16)
    axs[0, 1].set_ylabel("Density", fontsize=16)

    sns.boxplot(data=data, x=target, y=predictor, ax=axs[1, 0], 
palette="gist_rainbow")
    axs[1, 0].set_title("Boxplot w.r.t target")
    axs[1, 0].set_xlabel(tlabel, fontsize=16)
    axs[1, 0].set_ylabel(plabel, fontsize=16)

    sns.boxplot(
        data=data,
        x=target,
        y=predictor,
        ax=axs[1, 1],
        showfliers=False,
        palette="gist_rainbow",
    )
    axs[1, 1].set_title("Boxplot (without outliers) w.r.t target")
    axs[1, 1].set_xlabel(tlabel, fontsize=16)
    axs[1, 1].set_ylabel(plabel, fontsize=16)

    plt.tight_layout()
    plt.show()
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Case Status vs. Continent of Origin

Leading Question: How does the visa status vary across different continents?

# Use user-defined function stacked_barplot() to examine case 
certification likelihoods vs continent of origin
stacked_barplot(
    data=df_0,
    predictor="continent",
    target="case_status",
    xlabel="Continent of Origin",
    ylabel="Fraction of Applications",
)

case_status    Certified  Denied    All

continent                              

All                17018    8462  25480

Asia               11012    5849  16861

North America       2037    1255   3292

Europe              2957     775   3732

South America        493     359    852

Africa               397     154    551

Oceania              122      70    192

----------------------------------------------------------------------
--------------------------------------------------
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Observations
• Among different continents, Europe has the highest work visa certification rate (79%).
• The lowest work visa certification rate belongs to South America (58%).

Case Status vs. Education Level

Leading Question: Those with higher education may want to travel abroad for a well-paid job. 
Does education play a role in Visa certification?

# Use user-defined function stacked_barplot() to examine case 
certification likelihoods vs education level
stacked_barplot(
    data=df_0,
    predictor="education_of_employee",
    target="case_status",
    xlabel="Education Level",
    ylabel="Fraction of Applications",
)

case_status            Certified  Denied    All

education_of_employee                          

All                        17018    8462  25480

Bachelor's                  6367    3867  10234



High School                 1164    2256   3420

Master's                    7575    2059   9634

Doctorate                   1912     280   2192

----------------------------------------------------------------------
--------------------------------------------------
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Observations
• It is clear that the higher the education level of an applicants is, the more their chances of

visa certification are.
• More specifically, while the visa certification likelihood of the applicants of a doctorate 

degree is 87%, this likelihood is only 34% for the applicants of high school education.

Case Status vs. Job Experience

Leading Question: Experienced professionals might look abroad for opportunities to improve 
their lifestyles and career development. Does work experience influence visa status?



# Use user-defined function stacked_barplot() to examine case 
certification likelihoods vs job experience
stacked_barplot(
    data=df_0,
    predictor="has_job_experience",
    target="case_status",
    xlabel="Job Experience",
    ylabel="Fraction of Applications",
)

case_status         Certified  Denied    All

has_job_experience                          

All                     17018    8462  25480

N                        5994    4684  10678

Y                       11024    3778  14802

----------------------------------------------------------------------
--------------------------------------------------
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Observations
• Having job experience is found to have a positive effect on the visa certification 

likelihood.
• More specifically, about 74% of the experienced applicants are granted visas, while this 

percentages is only 56% for the inexperienced applicants.

Case Status vs. Job Training Requirement
# Use user-defined function stacked_barplot() to examine case 
certification likelihoods vs training requirement
stacked_barplot(
    data=df_0,
    predictor="requires_job_training",
    target="case_status",
    xlabel="Training Requirement",
    ylabel="Fraction of Applications",
)

case_status            Certified  Denied    All

requires_job_training                          

All                        17018    8462  25480

N                          15012    7513  22525

Y                           2006     949   2955

----------------------------------------------------------------------
--------------------------------------------------
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Observations
• The visa certification likelihood is found nearly unaffected by the job training 

requirement.

Case Status vs. Employer Region
# Use user-defined function stacked_barplot() to examine case 
certification likelihoods vs employer region
stacked_barplot(
    data=df_0,
    predictor="region_of_employment",
    target="case_status",
    xlabel="Employer Region",
    ylabel="Fraction of Applications",
)

case_status           Certified  Denied    All

region_of_employment                          

All                       17018    8462  25480

Northeast                  4526    2669   7195

West                       4100    2486   6586



South                      4913    2104   7017

Midwest                    3253    1054   4307

Island                      226     149    375

----------------------------------------------------------------------
--------------------------------------------------
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Observations
• It appears that the visa applications filed by the employers within the Midwest region 

have the highest probability (~76%) of certification.
• The employers located in the Northeast, West, and Island regions have lower chances 

(60-63%) of visa certification.

Case Status vs. Position Type
# Use user-defined function stacked_barplot() to examine case 
certification likelihoods vs position type
stacked_barplot(
    data=df_0,
    predictor="full_time_position",
    target="case_status",
    xlabel="Full-Time Position",
    ylabel="Fraction of Applications",
)



case_status         Certified  Denied    All

full_time_position                          

All                     17018    8462  25480

Y                       15163    7610  22773

N                        1855     852   2707

----------------------------------------------------------------------
--------------------------------------------------
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Observations
• Visa certification seems to be unaffected by whether a position is full-time or part-time.

Case Status vs. Wage Unit

Leading Question: In the United States, employees are paid at different intervals. Which pay unit 
is most likely to be certified for a visa?

# Use user-defined function stacked_barplot() to examine case 
certification likelihoods vs unit of prevailing wage
stacked_barplot(
    data=df_0,



    predictor="unit_of_wage",
    target="case_status",
    xlabel="Wage Unit",
    ylabel="Fraction of Applications",
)

case_status   Certified  Denied    All

unit_of_wage                          

All               17018    8462  25480

Year              16047    6915  22962

Hour                747    1410   2157

Week                169     103    272

Month                55      34     89

----------------------------------------------------------------------
--------------------------------------------------
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Observations
• Those applicants whose wage unit is year are more likely than other applicants to be 

certified for a visa (~70% likelihood).



• The applicants who are paid by hour are the least likely to be certified for a visa (~35% 
likelihood). This could be predicted, because hourly jobs are usually less important for 
the growth of the United States and they could be done by normal American workers.

Case Status vs. Number of Employees
# Use user-defined function distribution_plot_wrt_target() to examine 
case certification likelihoods across data categories
distribution_plot_wrt_target(
    data=df_0,
    predictor="no_of_employees",
    target="case_status",
    plabel="Number of Employees",
    tlabel="Case Status",
)
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Observations
• A very small difference is observed between the distributions of the employer's number 

of employees for those applications that are denied and those that are certified. As a 
result, it seems that the number of employees has insignificant effect on the likelihood of
visa certification.

Training Requirement vs. Job Experience
# Use seaborn heatmap to compare number of applications pivoted on job
experience and training requirement

# Create a count pivot table with respect to columns 
has_job_experience and requires_job_training
pt = df_0.pivot_table(
    values="case_status",
    index="has_job_experience",
    columns="requires_job_training",
    aggfunc="count",
)

# Plot a heatmap
plt.figure(figsize=(6, 4))
sns.heatmap(pt, square=True, annot=True, fmt="g")
plt.ylabel("Job Experience", fontsize=15)
plt.xlabel("Training Requirement", fontsize=15)

Text(0.5, 14.722222222222216, 'Training Requirement')
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Observations
• Reasonably, a higher percentage of the applicants who have no job experience require 

job training than the applicants who have job experience (16% vs. ~9%).

Job Training Requirement vs. Continent
# Use user-defined function stacked_barplot() to examine job training 
requirement vs continent of origin of applicants
stacked_barplot(
    data=df_0,
    predictor="continent",
    target="requires_job_training",
    xlabel="Continent of Origin",
    ylabel="Fraction of Applications",
)

requires_job_training      N     Y    All

continent                                

All                    22525  2955  25480

Asia                   15113  1748  16861

Europe                  2993   739   3732

North America           3044   248   3292

South America            702   150    852

Africa                   510    41    551

Oceania                  163    29    192

----------------------------------------------------------------------
--------------------------------------------------
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Observations
• Among the applicants from different continents, a smaller ratio of those from Africa and 

North America need training than those from other continents.
• The highest ratio of the applicants who need training belongs to those from Europe.

Data Preprocessing
# Create a copy of data frame before preprocessing
df_1 = df_0.copy()
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a) Treatment of Missing Values
Based on the initial evaluations, no values were missing in any of the columns. However, there 
were rows with unrealistic non-positive (<0) values of no_of_employees. To address this 
problem, these values are replaced with the median of no_of_employees.

# Identify rows with non-positive no_of_employees
neg_employee_no_rows = df_1.no_of_employees <= 0



# Print number of rows with non-positive no_of_employees
print(
    f"There are {neg_employee_no_rows.sum()} rows with non-positive 
number of employees."
)

# Replace negative values in column no_of_employees with its median
df_1.loc[neg_employee_no_rows, "no_of_employees"] = 
df_1.no_of_employees.median()

# Double-check minimum value of no_of_employees
print(f"The new minimum number of employees is 
{df_1.no_of_employees.min()}.")

There are 33 rows with non-positive number of employees.

The new minimum number of employees is 12.
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b) Feature Engineering
The feature yr_of_estab is converted to yrs_snc_estab, containing the years since 
establishment. Also, to make the prevailing wages (in the column prevailing_wage) 
interpretable across the rows, they are all transformed into an equivalent hourly wage and are 
saved in a new column, hourly_wage. The columns yr_of_estab and prevailing_wage 
are dropped subsequently.

# Add a new column, yrs_snc_estab, including years since establishment
- final year is 2016, when data is gathered
df_1["yrs_snc_estab"] = 2016 - df_1.yr_of_estab

# Drom yr_of_estab
df_1.drop("yr_of_estab", axis=1, inplace=True)

# Create a column including equivalent hourly wages - it is assumed 
that:
# A year includes 2080 work-hours
# A month includes 173 work-hours
# A week includes 40 work-hours
df_1["hourly_wage"] = df_1["prevailing_wage"]
df_1.loc[df_1.unit_of_wage == "Year", "hourly_wage"] = (
    df_1.loc[df_1.unit_of_wage == "Year", "hourly_wage"] / 2080.0
)
df_1.loc[df_1.unit_of_wage == "Month", "hourly_wage"] = (
    df_1.loc[df_1.unit_of_wage == "Month", "hourly_wage"] / 173.0
)



df_1.loc[df_1.unit_of_wage == "Week", "hourly_wage"] = (
    df_1.loc[df_1.unit_of_wage == "Week", "hourly_wage"] / 40.0
)

# Drom yr_of_estab
df_1.drop("prevailing_wage", axis=1, inplace=True)

# Check sample rows of updated data
df_1.sample(10, random_state=1)

           continent education_of_employee has_job_experience  \
17639           Asia            Bachelor's                  Y   
23951        Oceania            Bachelor's                  N   
8625            Asia              Master's                  N   
20206           Asia            Bachelor's                  Y   
7471          Europe            Bachelor's                  Y   
3433            Asia            Bachelor's                  Y   
24440         Europe           High School                  N   
12104           Asia              Master's                  Y   
15656           Asia            Bachelor's                  N   
23110  North America            Bachelor's                  Y   

      requires_job_training  no_of_employees region_of_employment  \
17639                     N              567              Midwest   
23951                     N              619              Midwest   
8625                      N             2635                South   
20206                     Y             3184            Northeast   
7471                      N             4681                 West   
3433                      N              222                South   
24440                     Y             3278                South   
12104                     N             1359                 West   
15656                     N             2081                 West   
23110                     N              854            Northeast   

      unit_of_wage full_time_position case_status  yrs_snc_estab  
hourly_wage  
17639         Year                  Y   Certified             24    
12.905245  
23951         Year                  Y   Certified             78    
31.932683  
8625          Hour                  Y   Certified             11   
887.292100  
20206         Year                  Y   Certified             30    
23.767212  
7471          Year                  Y      Denied             88    
23.973649  
3433          Hour                  Y   Certified             27   
813.726100  
24440         Year                  Y      Denied             22    
98.532880  



12104         Year                  N   Certified             19    
97.229346  
15656         Year                  Y      Denied             13    
53.708183  
23110         Hour                  Y      Denied             18   
444.825700  
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# Check statistical summary of numeric data in updated data
df_1.describe().T

                   count         mean           std        min        
25%  \
no_of_employees  25480.0  5669.797645  22877.372247  12.000000  
1028.00000   
yrs_snc_estab    25480.0    36.590071     42.366929   0.000000    
11.00000   
hourly_wage      25480.0    94.902995    278.176919   0.048077    
22.64806   

                         50%          75%           max  
no_of_employees  2109.000000  3504.000000  602069.00000  
yrs_snc_estab      19.000000    40.000000     216.00000  
hourly_wage        39.826663    60.012036    7004.39875  
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Observations
• The mean and median values of yrs_snc_estab are ~37 and 19 years, respectively. The

oldest employer was established 216 years before the data collection.
• The minimum and maximum values of hourly_wage are 0.05 and ~7004 (probably in 

dollars), respectively, so the variation of this variable is very large. The mean hourly wage
is ~95.

c) Detection and Treatment of Outliers
Detection of Outliers

Initially, the 1.5-IQR rule is used to detect potential outliers. However, it is noted that all the 
values detected as outlier by this method are not always outliers.

# Create a list of column names including numeric data
num_cols = df_1.select_dtypes(include=np.number).columns.tolist()

# Use boxplots with 1.5*IQR whiskers for each numeric variable to 
detect potential outliers
plt.figure(figsize=(9, 3))



for i, variable in enumerate(num_cols):
    plt.subplot(1, 3, i + 1)
    plt.boxplot(df_1[variable], whis=1.5)
    plt.tight_layout()
    plt.title(variable)

plt.show()
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Observations
• Given the discussions provided in the initial EDA section, not all the outliers detected 

based on the 1.5-IQR rule are actual outliers. Here, merely to remove very large 
infrequent values, the following maximum cut-off values are considered for the above 
three variables:

– no_of_employees: 450000
– yrs_snc_estab: 200
– hourly_wage: 4000

Treatment of Outliers
• The detected upper outliers are replaced with the maximum values of the respective 

columns in the absence of the outliers.

# Replace outliers in no_of_employees
df_1.loc[df_1.no_of_employees > 450000, "no_of_employees"] = df_1[
    df_1.no_of_employees <= 450000
].no_of_employees.max()

# Replace outliers in yrs_snc_estab
df_1.loc[df_1.yrs_snc_estab > 200, "yrs_snc_estab"] = df_1[
    df_1.yrs_snc_estab <= 200
].yrs_snc_estab.max()

# Replace outliers in hourly_wage
df_1.loc[df_1.hourly_wage > 4000, "hourly_wage"] = df_1[



    df_1.hourly_wage <= 4000
].hourly_wage.max()

# Use boxplots to check distributions again
plt.figure(figsize=(9, 3))

for i, variable in enumerate(num_cols):
    plt.subplot(1, 3, i + 1)
    plt.boxplot(df_1[variable], whis=1.5)
    plt.tight_layout()
    plt.title(variable)

plt.show()
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Secondary EDA
The focus of the secondary EDA is on the new variables created in the section Data 
Preprocessing, while correlation coefficients between the final numeric variables are also 
examined.

Univariate Analysis

Years Since Establishment
# Use user-defined function histogram_boxplot() to examine 
distribution of data
histogram_boxplot(
    data=df_1,
    feature="yrs_snc_estab",
    xlabel="Years Since Establishment",
    ylabel="Number of Applications",
    kde=True,
    bins=40,
)
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Observations
• The distribution is quite right-skewed and the majority of the employers are less than 40 

years old.
• As mentioned in the previous section on the treatment of outliers, the detected outliers 

per 1.5-IQR rule are not actually outliers.

Hourly Wage
# Use user-defined function histogram_boxplot() to examine 
distribution of data
histogram_boxplot(
    data=df_1,
    feature="hourly_wage",
    xlabel="Hourly Wage",
    ylabel="Number of Applications",
    kde=True,
    bins=70,
)
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Observations
• The distribution of the computed equivalent hourly wage is highly right-skewed and the 

majority of the applications are for the positions with less than 100 (dollars) of equivalent
hourly wage.

• Since there are certain positions in certain industries that are paid millions of dollars per 
year, the detected outliers are not actual outliers.

Bivariate Analysis

Linear Correlation Coefficients

The linear correlation coefficients are only determined between the numeric variables, i.e., 
no_of_employees, yrs_snc_estab, and hourly_wage.

# Create a list of column names including numeric data
num_cols = df_1.select_dtypes(include=np.number).columns.tolist()

# Compute correlation coefficients
rhos = df_1[num_cols].corr()



# Plot heatmap
plt.figure(figsize=(8, 6))  # set figure size

p = sns.heatmap(
    rhos,
    annot=True,
    square=True,
    vmin=-1,
    vmax=1,
    fmt=".2f",
    cmap="Spectral",
)  # create heatmap

p.set_title("Correlation Coefficients", fontsize=16)
# set chart's title

Text(0.5, 1.0, 'Correlation Coefficients')
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Observations
• Negligible linear correlation is observed between the numeric variables.

Pairplot
# Add case_status to list of column names including numeric data
num_cols = num_cols + ["case_status"]

# Create a pairplot to see distributions of and relationships between 
variations of numeric data
sns.pairplot(data=df_1[num_cols], hue="case_status", diag_kind="kde", 
aspect=1)

<seaborn.axisgrid.PairGrid at 0x7faf2fe0d0d0>
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Observations
• No linear correlation is observed between the numeric variables.
• It is hard to identify the effects of the above variables on the visa certification likelihood.

Case Status vs. Hourly Wage

Leading Question: The US government has established a prevailing wage to protect local talent 
and foreign workers. How does the visa status change with the prevailing wage?

# Use user-defined function distribution_plot_wrt_target() to examine 
case certification likelihoods across data categories
distribution_plot_wrt_target(
    data=df_1,
    predictor="hourly_wage",
    target="case_status",
    plabel="Hourly Wage",
    tlabel="Case Status",
)
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Observations
• It appears that a decrease in the equivalent hourly wage would lead to an increase in the 

likelihood of visa certification. This could be justified by the fact that the jobs that are 
paid higher could be more easily filled by American workers, making the emplyment of 
aliens unjustifiable.

Hourly Wage vs. Education Level
# Use seaborn boxplot to compare distributions of hourly wage for 
different education levels without outliers
plt.figure(figsize=(6, 4))
# set figure size
sns.boxplot(
    data=df_1,
    y="education_of_employee",
    x="hourly_wage",



    showmeans=True,
    showfliers=False,
    palette="Set2",
)  # create box plot

# set axis labels
plt.xlabel("Hourly Wage", fontsize=16)
plt.ylabel("Education Level", fontsize=16)

# set font size for axis ticks
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)

(array([0, 1, 2, 3]),
 [Text(0, 0, 'High School'),
  Text(0, 1, "Master's"),
  Text(0, 2, "Bachelor's"),
  Text(0, 3, 'Doctorate')])
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Observations
• Surprisingly, on average, the employees of less education (e.g., high school and 

bachelor's degree) seem to be paid more in terms of equivalent hourly wage than the 
employees of higher education, particularly, those of a doctorate degree.



Hourly Wage vs. Job Experience
# Use seaborn boxplot to compare distributions of hourly wage with 
respect to job experience
plt.figure(figsize=(6, 2))
# set figure size
sns.boxplot(
    data=df_1,
    y="has_job_experience",
    x="hourly_wage",
    showmeans=True,
    showfliers=False,
    palette="Set2",
)  # create box plot

# set axis labels
plt.xlabel("Hourly Wage", fontsize=16)
plt.ylabel("Job Experience", fontsize=16)

# set font size for axis ticks
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)

(array([0, 1]), [Text(0, 0, 'N'), Text(0, 1, 'Y')])
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Observations
• Surprisingly, on average, those employees that have job experience seem to receive 

lower equivalent hourly wage than those who have no job experience.

Hourly Wage vs. Job Training
# Use seaborn boxplot to compare distributions of hourly wage with 
respect to job training requirement
plt.figure(figsize=(6, 2))



# set figure size
sns.boxplot(
    data=df_1,
    y="requires_job_training",
    x="hourly_wage",
    showmeans=True,
    showfliers=False,
    palette="Set2",
)  # create box plot

# set axis labels
plt.xlabel("Hourly Wage", fontsize=16)
plt.ylabel("Training Requirement", fontsize=16)

# set font size for axis ticks
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)

(array([0, 1]), [Text(0, 0, 'N'), Text(0, 1, 'Y')])
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Observations
• On average, the equivalent hourly wage of the applicants who do not require training is 

higher than those who require training.

Case Status vs. Years Since Establishment
# Use user-defined function distribution_plot_wrt_target() to examine 
case certification likelihoods across data categories
distribution_plot_wrt_target(
    data=df_1,
    predictor="yrs_snc_estab",
    target="case_status",
    plabel="Years Since Establishment",



    tlabel="Case Status",
)
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Observations
• A very small difference is observed between the distributions of the employer's age for 

those applications that are denied and those that are certified. As a result, it seems that 
the number of years since establishment has insignificant effect on the likelihood of visa 
certification.

Number of Employees vs. Years Since Establishment
# Use seaborn jointplot to compare distributions of number of 
employees vs years since employer's establishment
plt.figure(figsize=(4, 4))
# set figure size
sns.jointplot(data=df_1, x="yrs_snc_estab", y="no_of_employees", 



kind="hex", bins=10)
# create joint plot

plt.xlabel("Years Since Establishment", fontsize=16)
# set x-axis label
plt.ylabel("Number of Employees", fontsize=16)
# set y-axis label

Text(37.597222222222214, 0.5, 'Number of Employees')

<Figure size 400x400 with 0 Axes>
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Observations
• Older employers seem to tend to have slightly smaller number of employees compared 

to the younger employers.

Data Preparation for Modeling

a) Encoding Categorical Data
Encoding the values in the columns has_job_experience, requires_job_training, 
full_time_position, case_status and education_of_employee.

# has_job_experience, requires_job_training, and full_time_position:
# Replace 'Y' with 1 and 'N' with 0
df_1.has_job_experience = df_1.has_job_experience.apply(lambda x: 1 if
x == "Y" else 0)
df_1.requires_job_training = df_1.requires_job_training.apply(
    lambda x: 1 if x == "Y" else 0
)
df_1.full_time_position = df_1.full_time_position.apply(lambda x: 1 if
x == "Y" else 0)

# case_status:
# Replace 'Certified' with 1 and 'Denied' with 0
df_1.case_status = df_1.case_status.apply(lambda x: 1 if x == 
"Certified" else 0)

# education_of_employee:
# Replace 'High School' with 1, 'Bachelor's' with 2, 'Master's' with 
3, and 'Doctarate' with 4
df_1.education_of_employee = df_1.education_of_employee.apply(
    lambda x: 1
    if x == "High School"
    else (2 if x == "Bachelor's" else (3 if x == "Master's" else 4))
)

# Check updated sample rows
df_1.sample(10, random_state=1)

           continent  education_of_employee  has_job_experience  \
17639           Asia                      2                   1   
23951        Oceania                      2                   0   
8625            Asia                      3                   0   
20206           Asia                      2                   1   
7471          Europe                      2                   1   
3433            Asia                      2                   1   
24440         Europe                      1                   0   



12104           Asia                      3                   1   
15656           Asia                      2                   0   
23110  North America                      2                   1   

       requires_job_training  no_of_employees region_of_employment  \
17639                      0              567              Midwest   
23951                      0              619              Midwest   
8625                       0             2635                South   
20206                      1             3184            Northeast   
7471                       0             4681                 West   
3433                       0              222                South   
24440                      1             3278                South   
12104                      0             1359                 West   
15656                      0             2081                 West   
23110                      0              854            Northeast   

      unit_of_wage  full_time_position  case_status  yrs_snc_estab  \
17639         Year                   1            1             24   
23951         Year                   1            1             78   
8625          Hour                   1            1             11   
20206         Year                   1            1             30   
7471          Year                   1            0             88   
3433          Hour                   1            1             27   
24440         Year                   1            0             22   
12104         Year                   0            1             19   
15656         Year                   1            0             13   
23110         Hour                   1            0             18   

       hourly_wage  
17639    12.905245  
23951    31.932683  
8625    887.292100  
20206    23.767212  
7471     23.973649  
3433    813.726100  
24440    98.532880  
12104    97.229346  
15656    53.708183  
23110   444.825700  
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Separation of Dependent and Independent Variables
# Create a data frame with only independent variables
X = df_1.drop(["case_status"], axis=1)

# Create a series with only dependent variable
Y = df_1.case_status



# Print some rows of X and Y data frames to check them
print("Independent Variables\n", "=" * 80, "\n", X.sample(5, 
random_state=1))
print("\n\nDependent Variables\n", "=" * 80, "\n", Y.sample(5, 
random_state=1))

Independent Variables

 
======================================================================
========== 

       continent  education_of_employee  has_job_experience  \

17639      Asia                      2                   1   

23951   Oceania                      2                   0   

8625       Asia                      3                   0   

20206      Asia                      2                   1   

7471     Europe                      2                   1   

       requires_job_training  no_of_employees region_of_employment  \

17639                      0              567              Midwest   

23951                      0              619              Midwest   

8625                       0             2635                South   

20206                      1             3184            Northeast   

7471                       0             4681                 West   

      unit_of_wage  full_time_position  yrs_snc_estab  hourly_wage  

17639         Year                   1             24    12.905245  

23951         Year                   1             78    31.932683  

8625          Hour                   1             11   887.292100  

20206         Year                   1             30    23.767212  

7471          Year                   1             88    23.973649  



Dependent Variables

 
======================================================================
========== 

 17639    1

23951    1

8625     1

20206    1

7471     0

Name: case_status, dtype: int64
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b) Creating Dummy Variables
Create dummy variables for the categorical columns, i.e., unit_of_wage, continent, and 
region_of_employment.

# Use pandas function get_dummies to create dummy variables and drop 
their first one
X = pd.get_dummies(X, drop_first=True)

# Check updated independent variables data frame
X.sample(5, random_state=1)

       education_of_employee  has_job_experience  
requires_job_training  \
17639                      2                   1                      
0   
23951                      2                   0                      
0   
8625                       3                   0                      
0   
20206                      2                   1                      
1   
7471                       2                   1                      
0   



       no_of_employees  full_time_position  yrs_snc_estab  hourly_wage
\
17639              567                   1             24    12.905245

23951              619                   1             78    31.932683

8625              2635                   1             11   887.292100

20206             3184                   1             30    23.767212

7471              4681                   1             88    23.973649

       continent_Asia  continent_Europe  continent_North America  \
17639               1                 0                        0   
23951               0                 0                        0   
8625                1                 0                        0   
20206               1                 0                        0   
7471                0                 1                        0   

       continent_Oceania  continent_South America  \
17639                  0                        0   
23951                  1                        0   
8625                   0                        0   
20206                  0                        0   
7471                   0                        0   

       region_of_employment_Midwest  region_of_employment_Northeast  \
17639                             1                               0   
23951                             1                               0   
8625                              0                               0   
20206                             0                               1   
7471                              0                               0   

       region_of_employment_South  region_of_employment_West  \
17639                           0                          0   
23951                           0                          0   
8625                            1                          0   
20206                           0                          0   
7471                            0                          1   

       unit_of_wage_Month  unit_of_wage_Week  unit_of_wage_Year  
17639                   0                  0                  1  
23951                   0                  0                  1  
8625                    0                  0                  0  
20206                   0                  0                  1  
7471                    0                  0                  1  
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c) Splitting Data into Training and Test Sets
# Use function train_test_split to create training and testing data 
sets for both dependnet and independent variables
X_train, X_test, Y_train, Y_test = train_test_split(
    X, Y, test_size=0.3, random_state=1, stratify=Y
)

# Check number of rows in each data set
print("Number of rows in training data set =", X_train.shape[0])
print("\nNumber of rows in test data set =", X_test.shape[0])

# Show percentage of number of rows in each data set
print("\nPercentage of classes in training set:")
print(Y_train.value_counts(normalize=True))
print("\nPercentage of classes in test set:")
print(Y_test.value_counts(normalize=True))

Number of rows in training data set = 17836

Number of rows in test data set = 7644

Percentage of classes in training set:

1    0.667919

0    0.332081

Name: case_status, dtype: float64

Percentage of classes in test set:

1    0.667844

0    0.332156

Name: case_status, dtype: float64
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Building Prediction Models

a) Evaluation Criterion
Possible Errors

• Prediction of visa certification while the visa will actually be denied, i.e., false positive.
• Prediction of visa denial while the visa will actually be certified, i.e., false negative.

More Important Error

A false positive would lead to the waste of the OFLC's time and staff resources, while a false 
negative would prevent a qualified applicant who could fill essential jobs in the United States 
from receiving work visa. Therefore, it appears that both errors could be equally important for 
the OFLC to be minimized.

Optimal Performance Measure

Given the foregoing, to minimize both the false positive and false negative errors 
simoltaneously, it is decided that F1-score could be the optimal performance measure for the 
models built subsequently. That is, the best model would maximize F1-score, while it would not 
be overfitting or underfitting the training data.

User-Defined Functions for Model Performance Evaluation
# User-defined function to compute different performance metrics to 
evaluate a classification model built using sklearn
def get_metrics_score(model, flag=True):
    """
    model: classifier to predict values of Y
    """

    # Predict Y using independent variables
    pred_train = model.predict(X_train)
    pred_test = model.predict(X_test)

    # Compute performance metrics
    train_acc = accuracy_score(Y_train, pred_train)  # accuracy
    test_acc = accuracy_score(Y_test, pred_test)

    train_recall = recall_score(Y_train, pred_train)  # recall
    test_recall = recall_score(Y_test, pred_test)

    train_precision = precision_score(Y_train, pred_train)  # 
precision
    test_precision = precision_score(Y_test, pred_test)

    train_f1 = f1_score(Y_train, pred_train)  # f1-score
    test_f1 = f1_score(Y_test, pred_test)



    # Create a dataframe of metrics
    df_perf = pd.DataFrame(
        {
            "Accuracy": [train_acc, test_acc],
            "Recall": [train_recall, test_recall],
            "Precision": [train_precision, test_precision],
            "F1": [train_f1, test_f1],
        },
        index=["Training", "Test"],
    )

    return df_perf
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# User-defined function to plot the confusion_matrix of a 
classification model built using sklearn based on test set
def make_confusion_matrix(model):
    """
    model: classifier to predict values of Y
    """
    Y_pred = model.predict(X_test)
    cm = confusion_matrix(Y_test, Y_pred)
    labels = np.asarray(
        [
            ["{0:0.0f}".format(item) + "\n{0:.2%}".format(item / 
cm.flatten().sum())]
            for item in cm.flatten()
        ]
    ).reshape(2, 2)

    plt.figure(figsize=(6, 4))
    sns.heatmap(cm, annot=labels, fmt="")
    plt.title("Test Set's Confusion Matrix", fontsize=16)
    plt.ylabel("Actual Label", fontsize=15)
    plt.xlabel("Predicted Label", fontsize=15)
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Decision Tree Classifier
# Use function DecisionTreeClassifier from sklearn to build model - 
consider `gini` criterion to split data at nodes
dcsn_tree = DecisionTreeClassifier(criterion="gini", random_state=1)
dcsn_tree.fit(X_train, Y_train)

DecisionTreeClassifier(random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(dcsn_tree)

# Check performance of model on both training and test data sets
perf_dcsn_tree = get_metrics_score(dcsn_tree)
perf_dcsn_tree

          Accuracy    Recall  Precision        F1
Training  1.000000  1.000000   1.000000  1.000000
Test      0.652669  0.736729   0.741522  0.739118

<IPython.core.display.Javascript object>

Observations
• The initial decision tree model works very well for the training data set - all performance 

metrics, i.e., accuracy , recall, precision, and F1-score are 1.00.
• However, the performance is not as good for the test set (F1-score is 0.74), implying 

overfitting. As a result, there is need for hyperparameter tuning through grid search.

Decision Tree Classifier with Hyperparameter Tuning
# Choose type of classifier
tnd_dcsn_tree = DecisionTreeClassifier(random_state=1)



# Form grid of parameters to search in
grid_para = {
    "class_weight": ["balanced", None],
    "max_depth": np.arange(2, 21, 2),
    "max_leaf_nodes": np.arange(2, 21, 2),
    "min_samples_split": [100, 200, 400, 800],
    "min_impurity_decrease": [0.0001, 0.001, 0.01],
}

# Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

# Run GridSearch
grid_obj = GridSearchCV(tnd_dcsn_tree, grid_para, scoring=scorer, 
cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

# Set classifer to best combination of parameters
tnd_dcsn_tree = grid_obj.best_estimator_

# Fit best decision tree to training data
tnd_dcsn_tree.fit(X_train, Y_train)

DecisionTreeClassifier(max_depth=4, max_leaf_nodes=14,
                       min_impurity_decrease=0.0001, 
min_samples_split=100,
                       random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(tnd_dcsn_tree)

# Check performance of model on both training and test data sets
perf_tnd_dcsn_tree = get_metrics_score(tnd_dcsn_tree)
perf_tnd_dcsn_tree

          Accuracy    Recall  Precision        F1
Training  0.737105  0.912784   0.748692  0.822635
Test      0.729853  0.911851   0.742424  0.818462
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Observations
• The tuned decision tree model has a better overall performance than the initial decision 

tree model. Specifically, all its metrics are almost equal for both training and test data 
sets, indicating that the model is not overfitting anymore.

• The F1-score for the test set has been increased from 0.74 for the initial model to 0.82 
for the tuned model.

# Create a list of column names - features of tree
col_names = list(X.columns)

# Check importances of various features of tuned tree
importances = tnd_dcsn_tree.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet", 
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()
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Observations
• The top four independent variables of importance in the tuned decision tree model are 

education_of_employee, has_job_experience, unit_of_wage_Year, and 
continent_Europe.



Bagging Classifier
# Use function BaggingClassifier from sklearn to build model
bagging = BaggingClassifier(random_state=1)
bagging.fit(X_train, Y_train)

BaggingClassifier(random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(bagging)

# Check performance of model on both training and test data sets
perf_bagging = get_metrics_score(bagging)
perf_bagging

          Accuracy    Recall  Precision       F1
Training  0.984077  0.985562   0.990551  0.98805
Test      0.690345  0.770813   0.766758  0.76878

<IPython.core.display.Javascript object>

Observations
• Compared to the initial decision tree model (not tuned), this model has slightly better 

performance on the test data set.



• However, considering the very high performance metrics for the training data set, it is 
clear that the model is overfitting and needs hyperparameter tuning.

Bagging Classifier with Hyperparameter Tuning
# Choose type of classifier
tnd_bagging = BaggingClassifier(random_state=1)

# Form grid of parameters to search in
grid_para = {
    "max_samples": [0.7, 0.8, 0.9, 1.0],
    "max_features": [0.7, 0.8, 0.9, 1.0],
    "n_estimators": np.arange(20, 101, 20),
}

# Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

# Run GridSearch
grid_obj = GridSearchCV(tnd_bagging, grid_para, scoring=scorer, cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

# Set classifer to best combination of parameters
tnd_bagging = grid_obj.best_estimator_

# Fit best decision tree to training data
tnd_bagging.fit(X_train, Y_train)

BaggingClassifier(max_features=0.7, max_samples=0.7, n_estimators=60,
                  random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(tnd_bagging)

# Check performance of model on both training and test data sets
perf_tnd_bagging = get_metrics_score(tnd_bagging)
perf_tnd_bagging

          Accuracy    Recall  Precision        F1
Training  0.984806  0.998405   0.979252  0.988736
Test      0.729853  0.883252   0.754266  0.813679
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Observations
• As seen, the model seems to still overfit the training data.
• On the test data set, the tuned model's performance has been slightly improved 

compared to the initial bagging model - the F1-score has been increased from 0.77 for 
the initial model to 0.81 for the tuned model.

Random Forest Classifier
# Use function RandomForestClassifier from sklearn to build model
rndm_frst = RandomForestClassifier(random_state=1)
rndm_frst.fit(X_train, Y_train)

RandomForestClassifier(random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(rndm_frst)

# Check performance of model on both training and test data sets
perf_rndm_frst = get_metrics_score(rndm_frst)
perf_rndm_frst



          Accuracy    Recall  Precision       F1
Training  1.000000  1.000000   1.000000  1.00000
Test      0.717949  0.829775   0.766974  0.79714
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Observations
• Compared to the initial decision tree model (not tuned), this model also has slightly 

better performance on the test data set.
• However, the metrics all equal 1.00 for the training data set, indicating overfitting. As a 

result, there is need for hyperparameter tuning.

Random Forest Classifier with Hyperparameter Tuning
#### Choose type of classifier
# Set oob_score as True to consider out-of-bag samples to estimate 
generalization score
tnd_rndm_frst = RandomForestClassifier(oob_score=True, random_state=1)

# Form grid of parameters to search in
grid_para = {
    "class_weight": ["balanced", None],
    "max_samples": [0.7, 0.8, 0.9, 1.0],
    "max_depth": np.arange(1, 5, 1),
    "max_features": ["sqrt", "log2"],



    "min_samples_split": [100, 200, 400, 800],
    "n_estimators": np.arange(20, 110, 20),
}

# Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

# Run GridSearch
grid_obj = GridSearchCV(tnd_rndm_frst, grid_para, scoring=scorer, 
cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

# Set classifer to best combination of parameters
tnd_rndm_frst = grid_obj.best_estimator_

# Fit best decision tree to training data
tnd_rndm_frst.fit(X_train, Y_train)

RandomForestClassifier(max_depth=4, max_features='sqrt', 
max_samples=0.8,
                       min_samples_split=200, n_estimators=60, 
oob_score=True,
                       random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(tnd_rndm_frst)

# Check performance of model on both training and test data sets
perf_tnd_rndm_frst = get_metrics_score(tnd_rndm_frst)
perf_tnd_rndm_frst

          Accuracy    Recall  Precision        F1
Training  0.730433  0.928649   0.736502  0.821490
Test      0.720173  0.927326   0.728084  0.815715



<IPython.core.display.Javascript object>

Observations
• The performance metrics are very close for the training and test data sets, showing that 

the model is not overfitting anymore.
• Compared to the initial random forest model (before tuning), on the test data, precision 

has decreased, but recall and F1-score have been increased.

# Check importances of various features of tuned random forest 
classifier
importances = tnd_rndm_frst.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet", 
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()



<IPython.core.display.Javascript object>

Observations
• The top four independent features of importance in the tuned random forest model are 

education_of_employee, has_job_experience, unit_of_wage_Year, and 
hourly_wage. Compared to the imprtant features in the tuned decision tree, only 
continent_Europe has been replaced with hourly_wage.



AdaBoost Classifier
# Use function AdaBoostClassifier from sklearn to build model
ada_boost = AdaBoostClassifier(random_state=1)
ada_boost.fit(X_train, Y_train)

AdaBoostClassifier(random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(ada_boost)

# Check performance of model on both training and test data sets
perf_ada_boost = get_metrics_score(ada_boost)
perf_ada_boost

          Accuracy    Recall  Precision        F1
Training  0.737441  0.888105   0.759512  0.818790
Test      0.733647  0.885994   0.756734  0.816279

<IPython.core.display.Javascript object>

Observations
• The model seems to already be generalizable, as the performance metrics for the 

training and test data sets are very close.



• Yet, a hyperparameter tuning may help to improve the model's performance.

AdaBoost Classifier with Hyperparameter Tuning
# Choose type of classifier
tnd_ada_boost = AdaBoostClassifier(random_state=1)

# Form grid of parameters to search in
grid_para = {
    "base_estimator": [
        DecisionTreeClassifier(max_depth=1),
        DecisionTreeClassifier(max_depth=2),
        DecisionTreeClassifier(max_depth=3),
    ],
    "n_estimators": np.arange(20, 110, 20),
    "learning_rate": np.arange(0.2, 1.1, 0.2),
}

# Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

# Run GridSearch
grid_obj = GridSearchCV(tnd_ada_boost, grid_para, scoring=scorer, 
cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

# Set classifer to best combination of parameters
tnd_ada_boost = grid_obj.best_estimator_

# Fit best decision tree to training data
tnd_ada_boost.fit(X_train, Y_train)

AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=3),
                   learning_rate=0.2, n_estimators=20, random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(tnd_ada_boost)

# Check performance of model on both training and test data sets
perf_tnd_ada_boost = get_metrics_score(tnd_ada_boost)
perf_tnd_ada_boost

          Accuracy    Recall  Precision        F1
Training  0.752579  0.886259   0.775411  0.827138
Test      0.741889  0.880901   0.767144  0.820097
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Observations
• No significant improvement is observed in the model performance after tuning.

# Check importances of various features of tuned AdaBoost classifier
importances = tnd_ada_boost.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet", 
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()
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Observations
• The top four independent features of importance in the tuned AdaBoost model are 

education_of_employee, has_job_experience, continent_Europe, and 
unit_of_wage_Year.



Gradient Boosting Classifier
# Use function GradientBoostingClassifier from sklearn to build model
grdnt_boost = GradientBoostingClassifier(random_state=1)
grdnt_boost.fit(X_train, Y_train)

GradientBoostingClassifier(random_state=1)
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# Create confusion matrix based on test data set
make_confusion_matrix(grdnt_boost)

# Check performance of model on both training and test data sets
perf_grdnt_boost = get_metrics_score(grdnt_boost)
perf_grdnt_boost

          Accuracy    Recall  Precision        F1
Training  0.756448  0.878368   0.783292  0.828110
Test      0.744767  0.875220   0.772743  0.820795

<IPython.core.display.Javascript object>

Observations
• The model already seems to perform well on both the training and test data sets and 

does not show overfitting.



• The F1-score for both training and test data sets is above 0.82, which is quite good.

Gradient Boosting Classifier with Hyperparameter Tuning
# Choose type of classifier
tnd_grdnt_boost = GradientBoostingClassifier(
    init=AdaBoostClassifier(random_state=1), random_state=1
)

# Form grid of parameters to search in
grid_para = {
    "subsample": [0.8, 0.9, 1.0],
    "max_features": [0.8, 0.9, 1.0],
    "n_estimators": np.arange(20, 110, 20),
    "learning_rate": np.arange(0.2, 1.1, 0.2),
}

# Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)

# Run GridSearch
grid_obj = GridSearchCV(tnd_grdnt_boost, grid_para, scoring=scorer, 
cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

# Set classifer to best combination of parameters
tnd_grdnt_boost = grid_obj.best_estimator_

# Fit best decision tree to training data
tnd_grdnt_boost.fit(X_train, Y_train)

GradientBoostingClassifier(init=AdaBoostClassifier(random_state=1),
                           learning_rate=0.2, max_features=1.0, 
n_estimators=20,
                           random_state=1, subsample=0.9)

<IPython.core.display.Javascript object>

# Create confusion matrix based on test data set
make_confusion_matrix(tnd_grdnt_boost)

# Check performance of model on both training and test data sets
perf_tnd_grdnt_boost = get_metrics_score(tnd_grdnt_boost)
perf_tnd_grdnt_boost

          Accuracy    Recall  Precision        F1
Training  0.750280  0.880467   0.775871  0.824866
Test      0.744636  0.880705   0.769995  0.821637
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Observations
• The hyperparameter tuning barely improves the performance of the gradient boosting 

model.

# Check importances of various features of tuned gradient boosting 
classifier
importances = tnd_grdnt_boost.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet", 
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()
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Observations
• The top four independent features of importance in the tuned gradient boosting model 

are education_of_employee, has_job_experience, unit_of_wage_Year, and 
continent_Europe.



XGBoost Classifier
# Use function XGBClassifier from xgboost to build model
xg_boost = XGBClassifier(eval_metric="logloss", random_state=1)
xg_boost.fit(X_train, Y_train)

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
              colsample_bynode=1, colsample_bytree=1, 
enable_categorical=False,
              eval_metric='logloss', gamma=0, gpu_id=-1, 
importance_type=None,
              interaction_constraints='', learning_rate=0.300000012,
              max_delta_step=0, max_depth=6, min_child_weight=1, 
missing=nan,
              monotone_constraints='()', n_estimators=100, n_jobs=8,
              num_parallel_tree=1, predictor='auto', random_state=1,
              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, 
subsample=1,
              tree_method='exact', validate_parameters=1, 
verbosity=None)
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# Create confusion matrix based on test data set
make_confusion_matrix(xg_boost)

# Check performance of model on both training and test data sets
perf_xg_boost = get_metrics_score(xg_boost)
perf_xg_boost

          Accuracy    Recall  Precision        F1
Training  0.836230  0.929069   0.842057  0.883426
Test      0.730115  0.854848   0.767499  0.808822
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Observations
• The model is slightly overfitting because its performance is better on the training data 

set than on the test data set.
• Hyperparameter tuning could be used to see if further improvement is possible.

XGBoost Classifier with Hyperparameter Tuning
# Choose type of classifier
tnd_xg_boost = XGBClassifier(eval_metric="logloss", random_state=1)

# Form grid of parameters to search in
grid_para = {
    "subsample": [0.8, 1.0],
    "scale_pos_weight": [1, 2],
    "gamma": [3, 5],
    "colsample_bytree": [0.8, 1.0],
    "colsample_bylevel": [0.8, 1.0],
    "n_estimators": [50, 100],
    "learning_rate": [0.1, 0.2],
}

# Set type of score used to evaluate performance throughout search
scorer = make_scorer(f1_score)



# Run GridSearch
grid_obj = GridSearchCV(tnd_xg_boost, grid_para, scoring=scorer, cv=5)
grid_obj = grid_obj.fit(X_train, Y_train)

# Set classifer to best combination of parameters
tnd_xg_boost = grid_obj.best_estimator_

# Fit best decision tree to training data
tnd_xg_boost.fit(X_train, Y_train)

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=0.8,
              colsample_bynode=1, colsample_bytree=0.8,
              enable_categorical=False, eval_metric='logloss', 
gamma=5,
              gpu_id=-1, importance_type=None, 
interaction_constraints='',
              learning_rate=0.1, max_delta_step=0, max_depth=6,
              min_child_weight=1, missing=nan, 
monotone_constraints='()',
              n_estimators=50, n_jobs=8, num_parallel_tree=1, 
predictor='auto',
              random_state=1, reg_alpha=0, reg_lambda=1, 
scale_pos_weight=1,
              subsample=0.8, tree_method='exact', 
validate_parameters=1,
              verbosity=None)
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# Create confusion matrix based on test data set
make_confusion_matrix(tnd_xg_boost)

# Check performance of model on both training and test data sets
perf_tnd_xg_boost = get_metrics_score(tnd_xg_boost)
perf_tnd_xg_boost

          Accuracy    Recall  Precision        F1
Training  0.763568  0.884328   0.787722  0.833234
Test      0.746337  0.873849   0.775017  0.821471
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Observations
• The tuned XGBoost model provides similar performances on both the training and test 

data sets.
• The model's performance on the test set was improved slightly via tuning, increasing the 

F1-score from 0.81 to 0.82.

# Check importances of various features of tuned XGBoost classifier
importances = tnd_xg_boost.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet", 
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()



<IPython.core.display.Javascript object>

Observations
• The top four independent features of importance in the tuned XGBoost model are 

education_of_employee, unit_of_wage_Year, has_job_experience, and 
continent_Europe.



Stacking Classifier
# Use function XGBClassifier from sklearn to build model
stacking = StackingClassifier(
    estimators=[
        ("Decision Tree", tnd_dcsn_tree),
        ("Random Forest", tnd_rndm_frst),
        ("AdaBoost", tnd_ada_boost),
        ("Gradient Boosting", tnd_grdnt_boost),
    ],
    final_estimator=tnd_xg_boost,
)
stacking.fit(X_train, Y_train)

StackingClassifier(estimators=[('Decision Tree',
                                DecisionTreeClassifier(max_depth=4,
                                                       
max_leaf_nodes=14,
                                                       
min_impurity_decrease=0.0001,
                                                       
min_samples_split=100,
                                                       
random_state=1)),
                               ('Random Forest',
                                RandomForestClassifier(max_depth=4,
                                                       
max_features='sqrt',
                                                       
max_samples=0.8,
                                                       
min_samples_split=200,
                                                       
n_estimators=60,
                                                       oob_score=True,
                                                       
random_state=1)),
                               ('AdaBoost',
                                AdaBoostClass...
                                                 gpu_id=-1,
                                                 importance_type=None,
                                                 
interaction_constraints='',
                                                 learning_rate=0.1,
                                                 max_delta_step=0, 
max_depth=6,
                                                 min_child_weight=1,
                                                 missing=nan,
                                                 
monotone_constraints='()',



                                                 n_estimators=50, 
n_jobs=8,
                                                 num_parallel_tree=1,
                                                 predictor='auto',
                                                 random_state=1, 
reg_alpha=0,
                                                 reg_lambda=1,
                                                 scale_pos_weight=1,
                                                 subsample=0.8,
                                                 tree_method='exact',
                                                 
validate_parameters=1,
                                                 verbosity=None))
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# Create confusion matrix based on test data set
make_confusion_matrix(stacking)

# Check performance of model on both training and test data sets
perf_stacking = get_metrics_score(stacking)
perf_stacking

          Accuracy    Recall  Precision        F1
Training  0.751962  0.865021   0.785382  0.823280
Test      0.743721  0.863271   0.777523  0.818157
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Observations
• The stacking model has a similar performance to the tuned XGBoost in terms of all 

metrics. Specifically, the F1-score is 0.82 for both the training and test data sets.

Comparison of Model Performances
# Create a data frame with summary of model performance on training 
data set
perf_train = pd.concat(
    [
        perf_dcsn_tree.loc["Training"].T,
        perf_tnd_dcsn_tree.loc["Training"].T,
        perf_bagging.loc["Training"].T,
        perf_tnd_bagging.loc["Training"].T,
        perf_rndm_frst.loc["Training"].T,
        perf_tnd_rndm_frst.loc["Training"].T,
        perf_ada_boost.loc["Training"].T,
        perf_tnd_ada_boost.loc["Training"].T,
        perf_grdnt_boost.loc["Training"].T,
        perf_tnd_grdnt_boost.loc["Training"].T,
        perf_xg_boost.loc["Training"].T,
        perf_tnd_xg_boost.loc["Training"].T,
        perf_stacking.loc["Training"].T,
    ],
    axis=1,
)

perf_train.columns = [
    "Decision Tree",
    "Tuned Decision Tree",
    "Bagging",
    "Tuned Bagging",
    "Random Forest",
    "Tuned Random Forest",
    "AdaBoost",
    "Tuned AdaBoost",
    "Gradient Boosting",
    "Tuned Gradient Boosting",
    "XGBoost",
    "Tuned XGBoost",
    "Stacking",
]

print("Model Performance Comparison for Training Data Set:")
perf_train



Model Performance Comparison for Training Data Set:

           Decision Tree  Tuned Decision Tree   Bagging  Tuned Bagging
\
Accuracy             1.0             0.737105  0.984077       0.984806

Recall               1.0             0.912784  0.985562       0.998405

Precision            1.0             0.748692  0.990551       0.979252

F1                   1.0             0.822635  0.988050       0.988736

           Random Forest  Tuned Random Forest  AdaBoost  Tuned 
AdaBoost  \
Accuracy             1.0             0.730433  0.737441        
0.752579   
Recall               1.0             0.928649  0.888105        
0.886259   
Precision            1.0             0.736502  0.759512        
0.775411   
F1                   1.0             0.821490  0.818790        
0.827138   

           Gradient Boosting  Tuned Gradient Boosting   XGBoost  \
Accuracy            0.756448                 0.750280  0.836230   
Recall              0.878368                 0.880467  0.929069   
Precision           0.783292                 0.775871  0.842057   
F1                  0.828110                 0.824866  0.883426   

           Tuned XGBoost  Stacking  
Accuracy        0.763568  0.751962  
Recall          0.884328  0.865021  
Precision       0.787722  0.785382  
F1              0.833234  0.823280  
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Observations
• Among the examined classifiers, Decision Tree, Bagging, Tuned Bagging, and Random 

Forest are overfitting the training data set.
• The remaining models perform almost similarly in terms of F1-score, except XGBoost 

that outperforms others.

# Create a data frame with summary of model performance on training 
data set
perf_test = pd.concat(
    [
        perf_dcsn_tree.loc["Test"].T,
        perf_tnd_dcsn_tree.loc["Test"].T,



        perf_bagging.loc["Test"].T,
        perf_tnd_bagging.loc["Test"].T,
        perf_rndm_frst.loc["Test"].T,
        perf_tnd_rndm_frst.loc["Test"].T,
        perf_ada_boost.loc["Test"].T,
        perf_tnd_ada_boost.loc["Test"].T,
        perf_grdnt_boost.loc["Test"].T,
        perf_tnd_grdnt_boost.loc["Test"].T,
        perf_xg_boost.loc["Test"].T,
        perf_tnd_xg_boost.loc["Test"].T,
        perf_stacking.loc["Test"].T,
    ],
    axis=1,
)

perf_test.columns = [
    "Decision Tree",
    "Tuned Decision Tree",
    "Bagging",
    "Tuned Bagging",
    "Random Forest",
    "Tuned Random Forest",
    "AdaBoost",
    "Tuned AdaBoost",
    "Gradient Boosting",
    "Tuned Gradient Boosting",
    "XGBoost",
    "Tuned XGBoost",
    "Stacking",
]

print("Model Performance Comparison for Test Data Set:")
perf_test

Model Performance Comparison for Test Data Set:

           Decision Tree  Tuned Decision Tree   Bagging  Tuned Bagging
\
Accuracy        0.652669             0.729853  0.690345       0.729853

Recall          0.736729             0.911851  0.770813       0.883252

Precision       0.741522             0.742424  0.766758       0.754266

F1              0.739118             0.818462  0.768780       0.813679

           Random Forest  Tuned Random Forest  AdaBoost  Tuned 
AdaBoost  \
Accuracy        0.717949             0.720173  0.733647        



0.741889   
Recall          0.829775             0.927326  0.885994        
0.880901   
Precision       0.766974             0.728084  0.756734        
0.767144   
F1              0.797140             0.815715  0.816279        
0.820097   

           Gradient Boosting  Tuned Gradient Boosting   XGBoost  \
Accuracy            0.744767                 0.744636  0.730115   
Recall              0.875220                 0.880705  0.854848   
Precision           0.772743                 0.769995  0.767499   
F1                  0.820795                 0.821637  0.808822   

           Tuned XGBoost  Stacking  
Accuracy        0.746337  0.743721  
Recall          0.873849  0.863271  
Precision       0.775017  0.777523  
F1              0.821471  0.818157  
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Observations
• Tuned Gradient Boosting model slightly outperforms all other models in terms of F1-

score.
• However, Tuned Decision Tree, Tuned Bagging, Tuned Random Forest, AdaBoost, Tuned 

AdaBoost, Gradient Boosting, Tuned Gradient Boosting, XGBoost, Tuned XGBoost, and 
Stacking all provide close F1-scores (0.81-0.82).

Selection of Final Model
• Considering the model performance, its interpretability, and its simplicity altogether, the

tuned decision tree is selected as the final model.

Final Model
Visualization
# Plot tuned tree
plt.figure(figsize=(35, 10))

plot_tree(
    decision_tree=tnd_dcsn_tree,
    feature_names=col_names,
    filled=True,
    fontsize=10,
    node_ids=True,
    class_names=True,
)



[Text(0.4375, 0.9, 'node #0\neducation_of_employee <= 1.5\ngini = 
0.444\nsamples = 17836\nvalue = [5923, 11913]\nclass = y[1]'),
 Text(0.20833333333333334, 0.7, 'node #1\ncontinent_Asia <= 0.5\ngini 
= 0.446\nsamples = 2418\nvalue = [1607, 811]\nclass = y[0]'),
 Text(0.125, 0.5, 'node #13\ncontinent_Europe <= 0.5\ngini = 0.492\
nsamples = 793\nvalue = [448, 345]\nclass = y[0]'),
 Text(0.08333333333333333, 0.3, 'node #17\nhas_job_experience <= 0.5\
ngini = 0.5\nsamples = 442\nvalue = [217, 225]\nclass = y[1]'),
 Text(0.041666666666666664, 0.1, 'node #19\ngini = 0.458\nsamples = 
180\nvalue = [116, 64]\nclass = y[0]'),
 Text(0.125, 0.1, 'node #20\ngini = 0.474\nsamples = 262\nvalue = 
[101, 161]\nclass = y[1]'),
 Text(0.16666666666666666, 0.3, 'node #18\ngini = 0.45\nsamples = 351\
nvalue = [231, 120]\nclass = y[0]'),
 Text(0.2916666666666667, 0.5, 'node #14\nregion_of_employment_West <=
0.5\ngini = 0.409\nsamples = 1625\nvalue = [1159, 466]\nclass = 
y[0]'),
 Text(0.25, 0.3, 'node #23\nregion_of_employment_Northeast <= 0.5\
ngini = 0.429\nsamples = 1302\nvalue = [897, 405]\nclass = y[0]'),
 Text(0.20833333333333334, 0.1, 'node #25\ngini = 0.454\nsamples = 
874\nvalue = [570, 304]\nclass = y[0]'),
 Text(0.2916666666666667, 0.1, 'node #26\ngini = 0.361\nsamples = 428\
nvalue = [327, 101]\nclass = y[0]'),
 Text(0.3333333333333333, 0.3, 'node #24\ngini = 0.306\nsamples = 323\
nvalue = [262, 61]\nclass = y[0]'),
 Text(0.6666666666666666, 0.7, 'node #2\nhas_job_experience <= 0.5\
ngini = 0.403\nsamples = 15418\nvalue = [4316, 11102]\nclass = y[1]'),
 Text(0.5, 0.5, 'node #3\nunit_of_wage_Year <= 0.5\ngini = 0.48\
nsamples = 6480\nvalue = [2597, 3883]\nclass = y[1]'),
 Text(0.4166666666666667, 0.3, 'node #7\neducation_of_employee <= 3.5\
ngini = 0.44\nsamples = 868\nvalue = [584, 284]\nclass = y[0]'),
 Text(0.375, 0.1, 'node #21\ngini = 0.427\nsamples = 816\nvalue = 
[564, 252]\nclass = y[0]'),
 Text(0.4583333333333333, 0.1, 'node #22\ngini = 0.473\nsamples = 52\
nvalue = [20, 32]\nclass = y[1]'),
 Text(0.5833333333333334, 0.3, 'node #8\ncontinent_Europe <= 0.5\ngini
= 0.46\nsamples = 5612\nvalue = [2013, 3599]\nclass = y[1]'),
 Text(0.5416666666666666, 0.1, 'node #9\ngini = 0.48\nsamples = 4731\
nvalue = [1887, 2844]\nclass = y[1]'),
 Text(0.625, 0.1, 'node #10\ngini = 0.245\nsamples = 881\nvalue = 
[126, 755]\nclass = y[1]'),
 Text(0.8333333333333334, 0.5, 'node #4\neducation_of_employee <= 2.5\
ngini = 0.311\nsamples = 8938\nvalue = [1719, 7219]\nclass = y[1]'),
 Text(0.75, 0.3, 'node #5\nunit_of_wage_Year <= 0.5\ngini = 0.421\
nsamples = 4080\nvalue = [1227, 2853]\nclass = y[1]'),
 Text(0.7083333333333334, 0.1, 'node #11\ngini = 0.481\nsamples = 340\
nvalue = [203, 137]\nclass = y[0]'),
 Text(0.7916666666666666, 0.1, 'node #12\ngini = 0.398\nsamples = 
3740\nvalue = [1024, 2716]\nclass = y[1]'),
 Text(0.9166666666666666, 0.3, 'node #6\nunit_of_wage_Year <= 0.5\



ngini = 0.182\nsamples = 4858\nvalue = [492, 4366]\nclass = y[1]'),
 Text(0.875, 0.1, 'node #15\ngini = 0.385\nsamples = 257\nvalue = [67,
190]\nclass = y[1]'),
 Text(0.9583333333333334, 0.1, 'node #16\ngini = 0.168\nsamples = 
4601\nvalue = [425, 4176]\nclass = y[1]')]

<IPython.core.display.Javascript object>

Important Features
# Check importances of various features of tuned tree
importances = tnd_dcsn_tree.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(6, 0.5 * len(col_names)))
plt.barh(range(len(indices)), importances[indices], color="violet", 
align="center")
plt.yticks(range(len(indices)), [col_names[i] for i in indices])
plt.xlabel("Relative Importance", fontsize=15)
plt.ylabel("Feature", fontsize=15)
plt.show()



<IPython.core.display.Javascript object>

Insights and Recommendations
Insights

• According to the EDA:
– The majority (66%) of work via applications are from Asia.



– A large portion (78%) of the applicants have a bachelor's or a master's degree 
and only less than 9% have a doctrate degree.

– Most (58%) of the applicants have job experience.
– The vast majority of offerred jobs (88%) do not require training.
– The majority (>81%) of the offered jobs are for Northeast, South, and West 

regions of the US.
– The majority (89%) of the offered positions are full-time.
– Merely about 10% of the positions have a wage unit other than Year.
– About 2/3 of the work visa applications are certified.
– The European and South American applicants have the highest and the lowest 

chances of visa certification, respectively.
– The higher the applicant's education level is, the more their chances of visa 

certification are.
– Having job experience increases the chances of visa certification.
– Job training requirement has a negligible effect on visa certification likelihood.
– The visa applications for the employment in the Midwest region are more likely to

be certified than the applications for the employment in other regions.
– Being a full- or part-time position does not observably affect the visa certification

likelihood.
– The offered positions with the wage units of Year and Hour have the highest and 

the lowest chances of visa certification, respectively.
– The employer's number of employees has an insignificant impact on the chances 

of visa certification for its potential foreign employees.
– The majority of employers applying for work visas are less than 40 years old.
– The majority of the applications are for the jobs with an equivalent hourly wage of

less than 100 (probably in dollars).
– The positions with certified visa applications are on average of lower equivalent 

hourly wages than the positions with denied visa applications.
– The age of an employer has negligible effect on the likelihood of visa certification.

• According to the fitted classifiers:
– Almost all the classifiers perform similarly, but the Tuned Gradient Boosting 

model slightly outperforms other models in terms of F1-score - it provided the 
maximum F1-score of 0.822 on the test data.

– Overall, the features education_of_employee, has_job_experience, and 
unit_of_wage_Year are among the top four important variables affecting the 
visa certification likelihood. Other variables of importance are 
continent_Europe and hourly_wage.

– According to the final selected model, i.e., Tuned Decision Tree:
• The top four variables of importance when predicting a visa certification 

are education_of_employee, has_job_experience, 
unit_of_wage_Year, and continent_Europe.

• The applicants meeting the following criteria have high chances of visa 
certification:

– Having a master's or a doctorate degree 
(education_of_employee > 2.5); having job experience 



(has_job_experience > 0.5); and applying for a position with a 
prevailing wage unit of year (unit_of_wage_Year > 0.5)

– Having a university degree (education_of_employee > 1.5); 
having no job experience (has_job_experience <= 0.5); 
applying for a position with a prevailing wage unit of year 
(unit_of_wage_Year > 0.5); and being from Europe 
(continent_Europe > 0.5)

– Having a bachelor's degree (1.5 < education_of_employee <= 
2.5); having job experience (has_job_experience > 0.5); and 
applying for a position with a prevailing wage unit of year 
(unit_of_wage_Year > 0.5)

• The applicants meeting the following criteria have high chances of visa 
denial:

– Having a bachelor's or a master's degree (1.5 < 
education_of_employee <= 3.5); having no job experience 
(has_job_experience <= 0.5); and applying for a position with 
a prevailing wage unit other than year (unit_of_wage_Year <= 
0.5)

– Having no university degree (education_of_employee <= 1.5); 
being from Asia (continent_Asia > 0.5); and being employed in 
the West region (region_of_employment_West > 0.5)

– Having no university degree (education_of_employee <= 1.5); 
being from Asia (continent_Asia > 0.5); and being employed in 
the Northeast region (region_of_employment_Northeast > 
0.5)

Recommendations
• Considering its relative simplicity and interpretability, the Tuned Decision Tree model is 

recommended to OFLC as the final classifier. If an ensemble model is preferred for 
reducing the bias, the Tuned Gradient Boosting model is recommended.

• Given the above insights, OFLC shall particularly consider the applicants' level of 
education, their job experience, and their prevailing wage unit in its visa certification 
probability estimations. The applicants who have a higher education, have job 
experience, and their US employment's wage unit is year are more likely to be eventually 
certified for a work visa. Being from Europe also increases the chances of visa 
certification in certain cases.

• In order to avoid workforce shortage in the US, especially in high-demand industries that 
depend on foreign employees, it is recommended that OFLC prioritizes the processing of
the visa applications that have higher chances of certification based on the developed 
classification models.

• To minimize the waste of OFLC's resources, it could quickly deny the applications that 
have very high chances of denial based on the prediction models - such applications 
could be reprocessed by a different section if appealed by the applicants/employers.

• It is recommended that some other potentially important variables are also considered in
the classification model development - examples are the industry of employment (e.g., 
medical, engineering, finance, agriculture, etc.), the applicant's amount of experience 



(e.g., in years), the agreement of the applicant's qualifications with the job, and the 
employer's socioeconomic benefits to the US.

• More sophisticated ML-based classification models are also recommended to be tried for
this purpose.
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